Existence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay

In this paper, we prove the existence and uniqueness of a mild solution to the system of ψ- Hilfer neutral fractional evolution equations with infinite delay H𝔻0αβ;ψ [x(t) − h(t, xt)] = A x(t) + f (t, x(t), xt), t ∈ [0, b], b > 0 and x(t) = ϕ(t), t ∈ (−∞, 0]. We first obtain the Volterra integral...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Norouzi Fatemeh, N’guérékata Gaston M.
Format: article
Langue:EN
Publié: De Gruyter 2021
Sujets:
Accès en ligne:https://doaj.org/article/e4a4486e9e1245a19b33d1381d28a8d0
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:In this paper, we prove the existence and uniqueness of a mild solution to the system of ψ- Hilfer neutral fractional evolution equations with infinite delay H𝔻0αβ;ψ [x(t) − h(t, xt)] = A x(t) + f (t, x(t), xt), t ∈ [0, b], b > 0 and x(t) = ϕ(t), t ∈ (−∞, 0]. We first obtain the Volterra integral equivalent equation and propose the mild solution of the system. Then, we prove the existence and uniqueness of solution by using the Banach contraction mapping principle and the Leray-Schauder alternative theorem.