Existence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay

In this paper, we prove the existence and uniqueness of a mild solution to the system of ψ- Hilfer neutral fractional evolution equations with infinite delay H𝔻0αβ;ψ [x(t) − h(t, xt)] = A x(t) + f (t, x(t), xt), t ∈ [0, b], b > 0 and x(t) = ϕ(t), t ∈ (−∞, 0]. We first obtain the Volterra integral...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Norouzi Fatemeh, N’guérékata Gaston M.
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/e4a4486e9e1245a19b33d1381d28a8d0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e4a4486e9e1245a19b33d1381d28a8d0
record_format dspace
spelling oai:doaj.org-article:e4a4486e9e1245a19b33d1381d28a8d02021-12-05T14:10:56ZExistence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay2353-062610.1515/msds-2020-0128https://doaj.org/article/e4a4486e9e1245a19b33d1381d28a8d02021-04-01T00:00:00Zhttps://doi.org/10.1515/msds-2020-0128https://doaj.org/toc/2353-0626In this paper, we prove the existence and uniqueness of a mild solution to the system of ψ- Hilfer neutral fractional evolution equations with infinite delay H𝔻0αβ;ψ [x(t) − h(t, xt)] = A x(t) + f (t, x(t), xt), t ∈ [0, b], b > 0 and x(t) = ϕ(t), t ∈ (−∞, 0]. We first obtain the Volterra integral equivalent equation and propose the mild solution of the system. Then, we prove the existence and uniqueness of solution by using the Banach contraction mapping principle and the Leray-Schauder alternative theorem.Norouzi FatemehN’guérékata Gaston M.De Gruyterarticleψ-hilfer fractional derivativeinfinite delaysmild solutionbanach contraction principleleray-schauder alternative34a0834a1234g9934k99MathematicsQA1-939ENNonautonomous Dynamical Systems, Vol 8, Iss 1, Pp 101-124 (2021)
institution DOAJ
collection DOAJ
language EN
topic ψ-hilfer fractional derivative
infinite delays
mild solution
banach contraction principle
leray-schauder alternative
34a08
34a12
34g99
34k99
Mathematics
QA1-939
spellingShingle ψ-hilfer fractional derivative
infinite delays
mild solution
banach contraction principle
leray-schauder alternative
34a08
34a12
34g99
34k99
Mathematics
QA1-939
Norouzi Fatemeh
N’guérékata Gaston M.
Existence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay
description In this paper, we prove the existence and uniqueness of a mild solution to the system of ψ- Hilfer neutral fractional evolution equations with infinite delay H𝔻0αβ;ψ [x(t) − h(t, xt)] = A x(t) + f (t, x(t), xt), t ∈ [0, b], b > 0 and x(t) = ϕ(t), t ∈ (−∞, 0]. We first obtain the Volterra integral equivalent equation and propose the mild solution of the system. Then, we prove the existence and uniqueness of solution by using the Banach contraction mapping principle and the Leray-Schauder alternative theorem.
format article
author Norouzi Fatemeh
N’guérékata Gaston M.
author_facet Norouzi Fatemeh
N’guérékata Gaston M.
author_sort Norouzi Fatemeh
title Existence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay
title_short Existence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay
title_full Existence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay
title_fullStr Existence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay
title_full_unstemmed Existence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay
title_sort existence results to a ψ- hilfer neutral fractional evolution equation with infinite delay
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/e4a4486e9e1245a19b33d1381d28a8d0
work_keys_str_mv AT norouzifatemeh existenceresultstoapshilferneutralfractionalevolutionequationwithinfinitedelay
AT nguerekatagastonm existenceresultstoapshilferneutralfractionalevolutionequationwithinfinitedelay
_version_ 1718371573569683456