Existence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay
In this paper, we prove the existence and uniqueness of a mild solution to the system of ψ- Hilfer neutral fractional evolution equations with infinite delay H𝔻0αβ;ψ [x(t) − h(t, xt)] = A x(t) + f (t, x(t), xt), t ∈ [0, b], b > 0 and x(t) = ϕ(t), t ∈ (−∞, 0]. We first obtain the Volterra integral...
Enregistré dans:
Auteurs principaux: | , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e4a4486e9e1245a19b33d1381d28a8d0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
id |
oai:doaj.org-article:e4a4486e9e1245a19b33d1381d28a8d0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e4a4486e9e1245a19b33d1381d28a8d02021-12-05T14:10:56ZExistence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay2353-062610.1515/msds-2020-0128https://doaj.org/article/e4a4486e9e1245a19b33d1381d28a8d02021-04-01T00:00:00Zhttps://doi.org/10.1515/msds-2020-0128https://doaj.org/toc/2353-0626In this paper, we prove the existence and uniqueness of a mild solution to the system of ψ- Hilfer neutral fractional evolution equations with infinite delay H𝔻0αβ;ψ [x(t) − h(t, xt)] = A x(t) + f (t, x(t), xt), t ∈ [0, b], b > 0 and x(t) = ϕ(t), t ∈ (−∞, 0]. We first obtain the Volterra integral equivalent equation and propose the mild solution of the system. Then, we prove the existence and uniqueness of solution by using the Banach contraction mapping principle and the Leray-Schauder alternative theorem.Norouzi FatemehN’guérékata Gaston M.De Gruyterarticleψ-hilfer fractional derivativeinfinite delaysmild solutionbanach contraction principleleray-schauder alternative34a0834a1234g9934k99MathematicsQA1-939ENNonautonomous Dynamical Systems, Vol 8, Iss 1, Pp 101-124 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
ψ-hilfer fractional derivative infinite delays mild solution banach contraction principle leray-schauder alternative 34a08 34a12 34g99 34k99 Mathematics QA1-939 |
spellingShingle |
ψ-hilfer fractional derivative infinite delays mild solution banach contraction principle leray-schauder alternative 34a08 34a12 34g99 34k99 Mathematics QA1-939 Norouzi Fatemeh N’guérékata Gaston M. Existence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay |
description |
In this paper, we prove the existence and uniqueness of a mild solution to the system of ψ- Hilfer neutral fractional evolution equations with infinite delay H𝔻0αβ;ψ [x(t) − h(t, xt)] = A x(t) + f (t, x(t), xt), t ∈ [0, b], b > 0 and x(t) = ϕ(t), t ∈ (−∞, 0]. We first obtain the Volterra integral equivalent equation and propose the mild solution of the system. Then, we prove the existence and uniqueness of solution by using the Banach contraction mapping principle and the Leray-Schauder alternative theorem. |
format |
article |
author |
Norouzi Fatemeh N’guérékata Gaston M. |
author_facet |
Norouzi Fatemeh N’guérékata Gaston M. |
author_sort |
Norouzi Fatemeh |
title |
Existence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay |
title_short |
Existence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay |
title_full |
Existence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay |
title_fullStr |
Existence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay |
title_full_unstemmed |
Existence results to a ψ- Hilfer neutral fractional evolution equation with infinite delay |
title_sort |
existence results to a ψ- hilfer neutral fractional evolution equation with infinite delay |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/e4a4486e9e1245a19b33d1381d28a8d0 |
work_keys_str_mv |
AT norouzifatemeh existenceresultstoapshilferneutralfractionalevolutionequationwithinfinitedelay AT nguerekatagastonm existenceresultstoapshilferneutralfractionalevolutionequationwithinfinitedelay |
_version_ |
1718371573569683456 |