Evaluation of semi-supervised learning using sparse labeling to segment cell nuclei
The analysis of microscopic images from cell cultures plays an important role in the development of drugs. The segmentation of such images is a basic step to extract the viable information on which further evaluation steps are build. Classical image processing pipelines often fail under heterogeneou...
Guardado en:
Autores principales: | Bruch Roman, Rudolf Rüdiger, Mikut Ralf, Reischl Markus |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e4a5b150923f44b58ccb623f327bec7c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Semi-Automated Semantic Segmentation of Arctic Shorelines Using Very High-Resolution Airborne Imagery, Spectral Indices and Weakly Supervised Machine Learning Approaches
por: Bibek Aryal, et al.
Publicado: (2021) -
Semi-Supervised Training for Positioning of Welding Seams
por: Wenbin Zhang, et al.
Publicado: (2021) -
ℓ<sub>1</sub>-norm based safe semi-supervised learning
por: Haitao Gan, et al.
Publicado: (2021) -
An Efficient Network Classification Based on Various-Widths Clustering and Semi-Supervised Stacking
por: Abdulmohsen Almalawi, et al.
Publicado: (2021) -
Review and Perspectives of Machine Learning Methods for Wind Turbine Fault Diagnosis
por: Mingzhu Tang, et al.
Publicado: (2021)