Impact of future climate on radial growth of four major boreal tree species in the Eastern Canadian boreal forest.
Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010-2099 diameter growth change of four major...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e4c505c620e74958b6bbfd55c229927e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e4c505c620e74958b6bbfd55c229927e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e4c505c620e74958b6bbfd55c229927e2021-11-18T07:55:36ZImpact of future climate on radial growth of four major boreal tree species in the Eastern Canadian boreal forest.1932-620310.1371/journal.pone.0056758https://doaj.org/article/e4c505c620e74958b6bbfd55c229927e2013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23468879/?tool=EBIhttps://doaj.org/toc/1932-6203Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010-2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere.Jian-Guo HuangYves BergeronFrank BerningerLihong ZhaiJacques C TardifBernhard DennelerPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 2, p e56758 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jian-Guo Huang Yves Bergeron Frank Berninger Lihong Zhai Jacques C Tardif Bernhard Denneler Impact of future climate on radial growth of four major boreal tree species in the Eastern Canadian boreal forest. |
description |
Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010-2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere. |
format |
article |
author |
Jian-Guo Huang Yves Bergeron Frank Berninger Lihong Zhai Jacques C Tardif Bernhard Denneler |
author_facet |
Jian-Guo Huang Yves Bergeron Frank Berninger Lihong Zhai Jacques C Tardif Bernhard Denneler |
author_sort |
Jian-Guo Huang |
title |
Impact of future climate on radial growth of four major boreal tree species in the Eastern Canadian boreal forest. |
title_short |
Impact of future climate on radial growth of four major boreal tree species in the Eastern Canadian boreal forest. |
title_full |
Impact of future climate on radial growth of four major boreal tree species in the Eastern Canadian boreal forest. |
title_fullStr |
Impact of future climate on radial growth of four major boreal tree species in the Eastern Canadian boreal forest. |
title_full_unstemmed |
Impact of future climate on radial growth of four major boreal tree species in the Eastern Canadian boreal forest. |
title_sort |
impact of future climate on radial growth of four major boreal tree species in the eastern canadian boreal forest. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2013 |
url |
https://doaj.org/article/e4c505c620e74958b6bbfd55c229927e |
work_keys_str_mv |
AT jianguohuang impactoffutureclimateonradialgrowthoffourmajorborealtreespeciesintheeasterncanadianborealforest AT yvesbergeron impactoffutureclimateonradialgrowthoffourmajorborealtreespeciesintheeasterncanadianborealforest AT frankberninger impactoffutureclimateonradialgrowthoffourmajorborealtreespeciesintheeasterncanadianborealforest AT lihongzhai impactoffutureclimateonradialgrowthoffourmajorborealtreespeciesintheeasterncanadianborealforest AT jacquesctardif impactoffutureclimateonradialgrowthoffourmajorborealtreespeciesintheeasterncanadianborealforest AT bernharddenneler impactoffutureclimateonradialgrowthoffourmajorborealtreespeciesintheeasterncanadianborealforest |
_version_ |
1718422763834703872 |