Clamp Nonlinear Modeling and Hysteresis Model Parameter Identification

Based on the Bouc-Wen model, a nonlinear hysteretic restoring force model is established with dynamic equations. The hardening and softening of the material after reaching the yield limit are described by the nonlinear restoring force-displacement hysteretic curve. The Gamultiobj algorithm and the g...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Junzhe Lin, Zhihong Niu, Xufang Zhang, Hui Ma, Yulai Zhao, Qingkai Han
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/e4d0e52c8d4a4b9383f7071d1ceecf57
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e4d0e52c8d4a4b9383f7071d1ceecf57
record_format dspace
spelling oai:doaj.org-article:e4d0e52c8d4a4b9383f7071d1ceecf572021-11-18T00:11:21ZClamp Nonlinear Modeling and Hysteresis Model Parameter Identification2169-353610.1109/ACCESS.2021.3123469https://doaj.org/article/e4d0e52c8d4a4b9383f7071d1ceecf572021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9590490/https://doaj.org/toc/2169-3536Based on the Bouc-Wen model, a nonlinear hysteretic restoring force model is established with dynamic equations. The hardening and softening of the material after reaching the yield limit are described by the nonlinear restoring force-displacement hysteretic curve. The Gamultiobj algorithm and the group search optimization (GSO) algorithm are used to fit and identify the material softening and hardening hysteresis curves, respectively. The effectiveness of the optimization algorithm for identifying the parameters of the hysteretic model is verified, and the optimization effects of the two algorithms are compared. The results show that the Gamultiobj algorithm has better parameter identification ability and curve fitting ability for the hysteretic model. Then, the hysteresis curve describing the nonlinear characteristics of a clamp is obtained through the static stiffness experiment of the clamp. The experimental curve is fitted by the Gamultiobj algorithm. As a result, the nonlinear Bouc-Wen model parameters of the clamp are obtained, and the stiffness and damping of the clamp are recognized. The distribution statistics of the obtained parameters are performed, and it is found that each parameter satisfies a certain probability distribution, which indicates that the parameter identification result is reasonable.Junzhe LinZhihong NiuXufang ZhangHui MaYulai ZhaoQingkai HanIEEEarticleHysteresis modelparameter identificationclampnonlinearElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 147757-147767 (2021)
institution DOAJ
collection DOAJ
language EN
topic Hysteresis model
parameter identification
clamp
nonlinear
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle Hysteresis model
parameter identification
clamp
nonlinear
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Junzhe Lin
Zhihong Niu
Xufang Zhang
Hui Ma
Yulai Zhao
Qingkai Han
Clamp Nonlinear Modeling and Hysteresis Model Parameter Identification
description Based on the Bouc-Wen model, a nonlinear hysteretic restoring force model is established with dynamic equations. The hardening and softening of the material after reaching the yield limit are described by the nonlinear restoring force-displacement hysteretic curve. The Gamultiobj algorithm and the group search optimization (GSO) algorithm are used to fit and identify the material softening and hardening hysteresis curves, respectively. The effectiveness of the optimization algorithm for identifying the parameters of the hysteretic model is verified, and the optimization effects of the two algorithms are compared. The results show that the Gamultiobj algorithm has better parameter identification ability and curve fitting ability for the hysteretic model. Then, the hysteresis curve describing the nonlinear characteristics of a clamp is obtained through the static stiffness experiment of the clamp. The experimental curve is fitted by the Gamultiobj algorithm. As a result, the nonlinear Bouc-Wen model parameters of the clamp are obtained, and the stiffness and damping of the clamp are recognized. The distribution statistics of the obtained parameters are performed, and it is found that each parameter satisfies a certain probability distribution, which indicates that the parameter identification result is reasonable.
format article
author Junzhe Lin
Zhihong Niu
Xufang Zhang
Hui Ma
Yulai Zhao
Qingkai Han
author_facet Junzhe Lin
Zhihong Niu
Xufang Zhang
Hui Ma
Yulai Zhao
Qingkai Han
author_sort Junzhe Lin
title Clamp Nonlinear Modeling and Hysteresis Model Parameter Identification
title_short Clamp Nonlinear Modeling and Hysteresis Model Parameter Identification
title_full Clamp Nonlinear Modeling and Hysteresis Model Parameter Identification
title_fullStr Clamp Nonlinear Modeling and Hysteresis Model Parameter Identification
title_full_unstemmed Clamp Nonlinear Modeling and Hysteresis Model Parameter Identification
title_sort clamp nonlinear modeling and hysteresis model parameter identification
publisher IEEE
publishDate 2021
url https://doaj.org/article/e4d0e52c8d4a4b9383f7071d1ceecf57
work_keys_str_mv AT junzhelin clampnonlinearmodelingandhysteresismodelparameteridentification
AT zhihongniu clampnonlinearmodelingandhysteresismodelparameteridentification
AT xufangzhang clampnonlinearmodelingandhysteresismodelparameteridentification
AT huima clampnonlinearmodelingandhysteresismodelparameteridentification
AT yulaizhao clampnonlinearmodelingandhysteresismodelparameteridentification
AT qingkaihan clampnonlinearmodelingandhysteresismodelparameteridentification
_version_ 1718425195800166400