Clamp Nonlinear Modeling and Hysteresis Model Parameter Identification
Based on the Bouc-Wen model, a nonlinear hysteretic restoring force model is established with dynamic equations. The hardening and softening of the material after reaching the yield limit are described by the nonlinear restoring force-displacement hysteretic curve. The Gamultiobj algorithm and the g...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e4d0e52c8d4a4b9383f7071d1ceecf57 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e4d0e52c8d4a4b9383f7071d1ceecf57 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e4d0e52c8d4a4b9383f7071d1ceecf572021-11-18T00:11:21ZClamp Nonlinear Modeling and Hysteresis Model Parameter Identification2169-353610.1109/ACCESS.2021.3123469https://doaj.org/article/e4d0e52c8d4a4b9383f7071d1ceecf572021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9590490/https://doaj.org/toc/2169-3536Based on the Bouc-Wen model, a nonlinear hysteretic restoring force model is established with dynamic equations. The hardening and softening of the material after reaching the yield limit are described by the nonlinear restoring force-displacement hysteretic curve. The Gamultiobj algorithm and the group search optimization (GSO) algorithm are used to fit and identify the material softening and hardening hysteresis curves, respectively. The effectiveness of the optimization algorithm for identifying the parameters of the hysteretic model is verified, and the optimization effects of the two algorithms are compared. The results show that the Gamultiobj algorithm has better parameter identification ability and curve fitting ability for the hysteretic model. Then, the hysteresis curve describing the nonlinear characteristics of a clamp is obtained through the static stiffness experiment of the clamp. The experimental curve is fitted by the Gamultiobj algorithm. As a result, the nonlinear Bouc-Wen model parameters of the clamp are obtained, and the stiffness and damping of the clamp are recognized. The distribution statistics of the obtained parameters are performed, and it is found that each parameter satisfies a certain probability distribution, which indicates that the parameter identification result is reasonable.Junzhe LinZhihong NiuXufang ZhangHui MaYulai ZhaoQingkai HanIEEEarticleHysteresis modelparameter identificationclampnonlinearElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 147757-147767 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Hysteresis model parameter identification clamp nonlinear Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
Hysteresis model parameter identification clamp nonlinear Electrical engineering. Electronics. Nuclear engineering TK1-9971 Junzhe Lin Zhihong Niu Xufang Zhang Hui Ma Yulai Zhao Qingkai Han Clamp Nonlinear Modeling and Hysteresis Model Parameter Identification |
description |
Based on the Bouc-Wen model, a nonlinear hysteretic restoring force model is established with dynamic equations. The hardening and softening of the material after reaching the yield limit are described by the nonlinear restoring force-displacement hysteretic curve. The Gamultiobj algorithm and the group search optimization (GSO) algorithm are used to fit and identify the material softening and hardening hysteresis curves, respectively. The effectiveness of the optimization algorithm for identifying the parameters of the hysteretic model is verified, and the optimization effects of the two algorithms are compared. The results show that the Gamultiobj algorithm has better parameter identification ability and curve fitting ability for the hysteretic model. Then, the hysteresis curve describing the nonlinear characteristics of a clamp is obtained through the static stiffness experiment of the clamp. The experimental curve is fitted by the Gamultiobj algorithm. As a result, the nonlinear Bouc-Wen model parameters of the clamp are obtained, and the stiffness and damping of the clamp are recognized. The distribution statistics of the obtained parameters are performed, and it is found that each parameter satisfies a certain probability distribution, which indicates that the parameter identification result is reasonable. |
format |
article |
author |
Junzhe Lin Zhihong Niu Xufang Zhang Hui Ma Yulai Zhao Qingkai Han |
author_facet |
Junzhe Lin Zhihong Niu Xufang Zhang Hui Ma Yulai Zhao Qingkai Han |
author_sort |
Junzhe Lin |
title |
Clamp Nonlinear Modeling and Hysteresis Model Parameter Identification |
title_short |
Clamp Nonlinear Modeling and Hysteresis Model Parameter Identification |
title_full |
Clamp Nonlinear Modeling and Hysteresis Model Parameter Identification |
title_fullStr |
Clamp Nonlinear Modeling and Hysteresis Model Parameter Identification |
title_full_unstemmed |
Clamp Nonlinear Modeling and Hysteresis Model Parameter Identification |
title_sort |
clamp nonlinear modeling and hysteresis model parameter identification |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/e4d0e52c8d4a4b9383f7071d1ceecf57 |
work_keys_str_mv |
AT junzhelin clampnonlinearmodelingandhysteresismodelparameteridentification AT zhihongniu clampnonlinearmodelingandhysteresismodelparameteridentification AT xufangzhang clampnonlinearmodelingandhysteresismodelparameteridentification AT huima clampnonlinearmodelingandhysteresismodelparameteridentification AT yulaizhao clampnonlinearmodelingandhysteresismodelparameteridentification AT qingkaihan clampnonlinearmodelingandhysteresismodelparameteridentification |
_version_ |
1718425195800166400 |