Interaction and influence of a flow field and particleboard particles in an airflow forming machine with a coupled Euler-DPM model.

Particleboards are widely used in the artificial board market, which can be constructed from a variety of raw materials and require small amounts of energy to be produced. In the particleboard production process, forming machines play an important role as the key equipment for achieving continuous p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jian Zhang, Qing Chen, Minghong Shi, Hongping Zhou, Linyun Xu
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e4e0aa2c45a24dd0add4f61c1dc39eda
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e4e0aa2c45a24dd0add4f61c1dc39eda
record_format dspace
spelling oai:doaj.org-article:e4e0aa2c45a24dd0add4f61c1dc39eda2021-12-02T20:10:27ZInteraction and influence of a flow field and particleboard particles in an airflow forming machine with a coupled Euler-DPM model.1932-620310.1371/journal.pone.0253311https://doaj.org/article/e4e0aa2c45a24dd0add4f61c1dc39eda2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0253311https://doaj.org/toc/1932-6203Particleboards are widely used in the artificial board market, which can be constructed from a variety of raw materials and require small amounts of energy to be produced. In the particleboard production process, forming machines play an important role as the key equipment for achieving continuous production. In recent years, airflow forming machines have received increasing attention in particleboard production lines because of their strong separation ability and low price. However, the internal flow field is complex and difficult to control, which affects the surface quality and strength of the particleboard. The most pressing technical difficulty is controlling the flow field characteristics of the airflow paver. At present, the research on this subject is conducted primarily through repeated experiments, which entail long research periods and high processing costs. To reduce human and financial costs, in this study, Computational Fluid Dynamics (CFD) is employed to investigate the flow field and the gas-solid two-phase flow field coupled with particle movement of an airflow forming machine. The accuracy of the calculation model is verified by comparing characteristic point velocities obtained from experimental analysis and a simulation. The simulation results show that in practical production, the frequency of a negative pressure fan should be greater than 27 Hz. It is necessary to set the shoulder properly, and the slab smoothness can be improved by moving the shoulder back on the premise of meeting the strength requirements of the box. The distance between the shoulders of the box body should be less than 2570 mm, and particles with uniform diameter should be added to the paving box to reduce the turbulence effect, improve the quality of particle forming and provide actual particleboard production with a solid theoretical foundation.Jian ZhangQing ChenMinghong ShiHongping ZhouLinyun XuPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 6, p e0253311 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jian Zhang
Qing Chen
Minghong Shi
Hongping Zhou
Linyun Xu
Interaction and influence of a flow field and particleboard particles in an airflow forming machine with a coupled Euler-DPM model.
description Particleboards are widely used in the artificial board market, which can be constructed from a variety of raw materials and require small amounts of energy to be produced. In the particleboard production process, forming machines play an important role as the key equipment for achieving continuous production. In recent years, airflow forming machines have received increasing attention in particleboard production lines because of their strong separation ability and low price. However, the internal flow field is complex and difficult to control, which affects the surface quality and strength of the particleboard. The most pressing technical difficulty is controlling the flow field characteristics of the airflow paver. At present, the research on this subject is conducted primarily through repeated experiments, which entail long research periods and high processing costs. To reduce human and financial costs, in this study, Computational Fluid Dynamics (CFD) is employed to investigate the flow field and the gas-solid two-phase flow field coupled with particle movement of an airflow forming machine. The accuracy of the calculation model is verified by comparing characteristic point velocities obtained from experimental analysis and a simulation. The simulation results show that in practical production, the frequency of a negative pressure fan should be greater than 27 Hz. It is necessary to set the shoulder properly, and the slab smoothness can be improved by moving the shoulder back on the premise of meeting the strength requirements of the box. The distance between the shoulders of the box body should be less than 2570 mm, and particles with uniform diameter should be added to the paving box to reduce the turbulence effect, improve the quality of particle forming and provide actual particleboard production with a solid theoretical foundation.
format article
author Jian Zhang
Qing Chen
Minghong Shi
Hongping Zhou
Linyun Xu
author_facet Jian Zhang
Qing Chen
Minghong Shi
Hongping Zhou
Linyun Xu
author_sort Jian Zhang
title Interaction and influence of a flow field and particleboard particles in an airflow forming machine with a coupled Euler-DPM model.
title_short Interaction and influence of a flow field and particleboard particles in an airflow forming machine with a coupled Euler-DPM model.
title_full Interaction and influence of a flow field and particleboard particles in an airflow forming machine with a coupled Euler-DPM model.
title_fullStr Interaction and influence of a flow field and particleboard particles in an airflow forming machine with a coupled Euler-DPM model.
title_full_unstemmed Interaction and influence of a flow field and particleboard particles in an airflow forming machine with a coupled Euler-DPM model.
title_sort interaction and influence of a flow field and particleboard particles in an airflow forming machine with a coupled euler-dpm model.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/e4e0aa2c45a24dd0add4f61c1dc39eda
work_keys_str_mv AT jianzhang interactionandinfluenceofaflowfieldandparticleboardparticlesinanairflowformingmachinewithacoupledeulerdpmmodel
AT qingchen interactionandinfluenceofaflowfieldandparticleboardparticlesinanairflowformingmachinewithacoupledeulerdpmmodel
AT minghongshi interactionandinfluenceofaflowfieldandparticleboardparticlesinanairflowformingmachinewithacoupledeulerdpmmodel
AT hongpingzhou interactionandinfluenceofaflowfieldandparticleboardparticlesinanairflowformingmachinewithacoupledeulerdpmmodel
AT linyunxu interactionandinfluenceofaflowfieldandparticleboardparticlesinanairflowformingmachinewithacoupledeulerdpmmodel
_version_ 1718375032762138624