Advanced Control of Frictional Properties on Paper Clutch Materials by a Combination of Friction Modifiers
This study proposes a novel approach for controlling frictional performances at paper clutch systems by a combination of organic friction modifiers (OFMs). The OFMs are commonly used for modifying the frictional properties at the paper clutch. Although the effect of the OFMs tends to be dependent on...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Japanese Society of Tribologists
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e4f57bb92f6047289e1798b5673d406b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e4f57bb92f6047289e1798b5673d406b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e4f57bb92f6047289e1798b5673d406b2021-11-05T09:20:26ZAdvanced Control of Frictional Properties on Paper Clutch Materials by a Combination of Friction Modifiers1881-219810.2474/trol.12.103https://doaj.org/article/e4f57bb92f6047289e1798b5673d406b2017-07-01T00:00:00Zhttps://www.jstage.jst.go.jp/article/trol/12/3/12_103/_pdf/-char/enhttps://doaj.org/toc/1881-2198This study proposes a novel approach for controlling frictional performances at paper clutch systems by a combination of organic friction modifiers (OFMs). The OFMs are commonly used for modifying the frictional properties at the paper clutch. Although the effect of the OFMs tends to be dependent on temperature due to their working mechanism based on the surface adsorption, the frictional properties are preferable to be stable in all the operating temperature for the consistent and precise clutch control. Aiming to modify the temperature dependence of the OFM effect, an OFM with an Advanced Concept (FMAC) was newly developed, and the impact on the clutch frictional performance was investigated using Low Velocity Friction Apparatus (LVFA). Only with the conventional OFM, the friction values experienced excessive reduction at 80 or 120°C, while an optimal property was achieved at 40°C. In the presence of the FMAC, it was possible to inhibit the conventional OFM selectively at the high temperature conditions preventing the friction reduction, leading to the ideal frictional property in all the temperature conditions. The surface analysis revealed that the FMACs were capable of adsorbing on the substrate more intensively at high temperature, which should be the reason of the temperature dependent competitive effect of the FMACs.Go TatsumiShinji HasegawaYasushi OnumataJapanese Society of Tribologistsarticlelubricantautomatic transmission fluid (atf)friction modifier (fm)low velocity friction apparatus (lvfa)PhysicsQC1-999Engineering (General). Civil engineering (General)TA1-2040Mechanical engineering and machineryTJ1-1570ChemistryQD1-999ENTribology Online, Vol 12, Iss 3, Pp 103-109 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
lubricant automatic transmission fluid (atf) friction modifier (fm) low velocity friction apparatus (lvfa) Physics QC1-999 Engineering (General). Civil engineering (General) TA1-2040 Mechanical engineering and machinery TJ1-1570 Chemistry QD1-999 |
spellingShingle |
lubricant automatic transmission fluid (atf) friction modifier (fm) low velocity friction apparatus (lvfa) Physics QC1-999 Engineering (General). Civil engineering (General) TA1-2040 Mechanical engineering and machinery TJ1-1570 Chemistry QD1-999 Go Tatsumi Shinji Hasegawa Yasushi Onumata Advanced Control of Frictional Properties on Paper Clutch Materials by a Combination of Friction Modifiers |
description |
This study proposes a novel approach for controlling frictional performances at paper clutch systems by a combination of organic friction modifiers (OFMs). The OFMs are commonly used for modifying the frictional properties at the paper clutch. Although the effect of the OFMs tends to be dependent on temperature due to their working mechanism based on the surface adsorption, the frictional properties are preferable to be stable in all the operating temperature for the consistent and precise clutch control. Aiming to modify the temperature dependence of the OFM effect, an OFM with an Advanced Concept (FMAC) was newly developed, and the impact on the clutch frictional performance was investigated using Low Velocity Friction Apparatus (LVFA). Only with the conventional OFM, the friction values experienced excessive reduction at 80 or 120°C, while an optimal property was achieved at 40°C. In the presence of the FMAC, it was possible to inhibit the conventional OFM selectively at the high temperature conditions preventing the friction reduction, leading to the ideal frictional property in all the temperature conditions. The surface analysis revealed that the FMACs were capable of adsorbing on the substrate more intensively at high temperature, which should be the reason of the temperature dependent competitive effect of the FMACs. |
format |
article |
author |
Go Tatsumi Shinji Hasegawa Yasushi Onumata |
author_facet |
Go Tatsumi Shinji Hasegawa Yasushi Onumata |
author_sort |
Go Tatsumi |
title |
Advanced Control of Frictional Properties on Paper Clutch Materials by a Combination of Friction Modifiers |
title_short |
Advanced Control of Frictional Properties on Paper Clutch Materials by a Combination of Friction Modifiers |
title_full |
Advanced Control of Frictional Properties on Paper Clutch Materials by a Combination of Friction Modifiers |
title_fullStr |
Advanced Control of Frictional Properties on Paper Clutch Materials by a Combination of Friction Modifiers |
title_full_unstemmed |
Advanced Control of Frictional Properties on Paper Clutch Materials by a Combination of Friction Modifiers |
title_sort |
advanced control of frictional properties on paper clutch materials by a combination of friction modifiers |
publisher |
Japanese Society of Tribologists |
publishDate |
2017 |
url |
https://doaj.org/article/e4f57bb92f6047289e1798b5673d406b |
work_keys_str_mv |
AT gotatsumi advancedcontroloffrictionalpropertiesonpaperclutchmaterialsbyacombinationoffrictionmodifiers AT shinjihasegawa advancedcontroloffrictionalpropertiesonpaperclutchmaterialsbyacombinationoffrictionmodifiers AT yasushionumata advancedcontroloffrictionalpropertiesonpaperclutchmaterialsbyacombinationoffrictionmodifiers |
_version_ |
1718444441296961536 |