Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets
Visualisation tools that use dimensionality reduction, such as t-SNE, provide poor visualisation on large data sets of millions of observations. Here the authors present opt-SNE, that automatically finds data set-tailored parameters for t-SNE to optimise visualisation and improve analysis.
Enregistré dans:
Auteurs principaux: | Anna C. Belkina, Christopher O. Ciccolella, Rina Anno, Richard Halpert, Josef Spidlen, Jennifer E. Snyder-Cappione |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e5126a248205487bb5a7c54c11c0bcc3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types
par: Vincent van Unen, et autres
Publié: (2017) -
Automated optimization of large quantum circuits with continuous parameters
par: Yunseong Nam, et autres
Publié: (2018) -
Deep Large Margin Nearest Neighbor for Gait Recognition
par: Xu Wanjiang
Publié: (2021) -
Deep learning for visualization and novelty detection in large X-ray diffraction datasets
par: Lars Banko, et autres
Publié: (2021) -
ReVisE: Remote visualization environment for large numerical simulation datasets.
par: Stepan Orlov, et autres
Publié: (2021)