Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets
Visualisation tools that use dimensionality reduction, such as t-SNE, provide poor visualisation on large data sets of millions of observations. Here the authors present opt-SNE, that automatically finds data set-tailored parameters for t-SNE to optimise visualisation and improve analysis.
Guardado en:
Autores principales: | Anna C. Belkina, Christopher O. Ciccolella, Rina Anno, Richard Halpert, Josef Spidlen, Jennifer E. Snyder-Cappione |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e5126a248205487bb5a7c54c11c0bcc3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types
por: Vincent van Unen, et al.
Publicado: (2017) -
Automated optimization of large quantum circuits with continuous parameters
por: Yunseong Nam, et al.
Publicado: (2018) -
Deep Large Margin Nearest Neighbor for Gait Recognition
por: Xu Wanjiang
Publicado: (2021) -
Deep learning for visualization and novelty detection in large X-ray diffraction datasets
por: Lars Banko, et al.
Publicado: (2021) -
ReVisE: Remote visualization environment for large numerical simulation datasets.
por: Stepan Orlov, et al.
Publicado: (2021)