Universal fragment descriptors for predicting properties of inorganic crystals
Machine learning methods can be useful for materials discovery; however certain properties remain difficult to predict. Here, the authors present a universal machine learning approach for modelling the properties of inorganic crystals, which is validated for eight electronic and thermomechanical pro...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e51aabf9bad84fe6a8a7bf233cac04c5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Machine learning methods can be useful for materials discovery; however certain properties remain difficult to predict. Here, the authors present a universal machine learning approach for modelling the properties of inorganic crystals, which is validated for eight electronic and thermomechanical properties. |
---|