Universal fragment descriptors for predicting properties of inorganic crystals
Machine learning methods can be useful for materials discovery; however certain properties remain difficult to predict. Here, the authors present a universal machine learning approach for modelling the properties of inorganic crystals, which is validated for eight electronic and thermomechanical pro...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e51aabf9bad84fe6a8a7bf233cac04c5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e51aabf9bad84fe6a8a7bf233cac04c5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e51aabf9bad84fe6a8a7bf233cac04c52021-12-02T15:38:39ZUniversal fragment descriptors for predicting properties of inorganic crystals10.1038/ncomms156792041-1723https://doaj.org/article/e51aabf9bad84fe6a8a7bf233cac04c52017-06-01T00:00:00Zhttps://doi.org/10.1038/ncomms15679https://doaj.org/toc/2041-1723Machine learning methods can be useful for materials discovery; however certain properties remain difficult to predict. Here, the authors present a universal machine learning approach for modelling the properties of inorganic crystals, which is validated for eight electronic and thermomechanical properties.Olexandr IsayevCorey OsesCormac ToherEric GossettStefano CurtaroloAlexander TropshaNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-12 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Olexandr Isayev Corey Oses Cormac Toher Eric Gossett Stefano Curtarolo Alexander Tropsha Universal fragment descriptors for predicting properties of inorganic crystals |
description |
Machine learning methods can be useful for materials discovery; however certain properties remain difficult to predict. Here, the authors present a universal machine learning approach for modelling the properties of inorganic crystals, which is validated for eight electronic and thermomechanical properties. |
format |
article |
author |
Olexandr Isayev Corey Oses Cormac Toher Eric Gossett Stefano Curtarolo Alexander Tropsha |
author_facet |
Olexandr Isayev Corey Oses Cormac Toher Eric Gossett Stefano Curtarolo Alexander Tropsha |
author_sort |
Olexandr Isayev |
title |
Universal fragment descriptors for predicting properties of inorganic crystals |
title_short |
Universal fragment descriptors for predicting properties of inorganic crystals |
title_full |
Universal fragment descriptors for predicting properties of inorganic crystals |
title_fullStr |
Universal fragment descriptors for predicting properties of inorganic crystals |
title_full_unstemmed |
Universal fragment descriptors for predicting properties of inorganic crystals |
title_sort |
universal fragment descriptors for predicting properties of inorganic crystals |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/e51aabf9bad84fe6a8a7bf233cac04c5 |
work_keys_str_mv |
AT olexandrisayev universalfragmentdescriptorsforpredictingpropertiesofinorganiccrystals AT coreyoses universalfragmentdescriptorsforpredictingpropertiesofinorganiccrystals AT cormactoher universalfragmentdescriptorsforpredictingpropertiesofinorganiccrystals AT ericgossett universalfragmentdescriptorsforpredictingpropertiesofinorganiccrystals AT stefanocurtarolo universalfragmentdescriptorsforpredictingpropertiesofinorganiccrystals AT alexandertropsha universalfragmentdescriptorsforpredictingpropertiesofinorganiccrystals |
_version_ |
1718386145853702144 |