Universal fragment descriptors for predicting properties of inorganic crystals

Machine learning methods can be useful for materials discovery; however certain properties remain difficult to predict. Here, the authors present a universal machine learning approach for modelling the properties of inorganic crystals, which is validated for eight electronic and thermomechanical pro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Olexandr Isayev, Corey Oses, Cormac Toher, Eric Gossett, Stefano Curtarolo, Alexander Tropsha
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/e51aabf9bad84fe6a8a7bf233cac04c5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e51aabf9bad84fe6a8a7bf233cac04c5
record_format dspace
spelling oai:doaj.org-article:e51aabf9bad84fe6a8a7bf233cac04c52021-12-02T15:38:39ZUniversal fragment descriptors for predicting properties of inorganic crystals10.1038/ncomms156792041-1723https://doaj.org/article/e51aabf9bad84fe6a8a7bf233cac04c52017-06-01T00:00:00Zhttps://doi.org/10.1038/ncomms15679https://doaj.org/toc/2041-1723Machine learning methods can be useful for materials discovery; however certain properties remain difficult to predict. Here, the authors present a universal machine learning approach for modelling the properties of inorganic crystals, which is validated for eight electronic and thermomechanical properties.Olexandr IsayevCorey OsesCormac ToherEric GossettStefano CurtaroloAlexander TropshaNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-12 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Olexandr Isayev
Corey Oses
Cormac Toher
Eric Gossett
Stefano Curtarolo
Alexander Tropsha
Universal fragment descriptors for predicting properties of inorganic crystals
description Machine learning methods can be useful for materials discovery; however certain properties remain difficult to predict. Here, the authors present a universal machine learning approach for modelling the properties of inorganic crystals, which is validated for eight electronic and thermomechanical properties.
format article
author Olexandr Isayev
Corey Oses
Cormac Toher
Eric Gossett
Stefano Curtarolo
Alexander Tropsha
author_facet Olexandr Isayev
Corey Oses
Cormac Toher
Eric Gossett
Stefano Curtarolo
Alexander Tropsha
author_sort Olexandr Isayev
title Universal fragment descriptors for predicting properties of inorganic crystals
title_short Universal fragment descriptors for predicting properties of inorganic crystals
title_full Universal fragment descriptors for predicting properties of inorganic crystals
title_fullStr Universal fragment descriptors for predicting properties of inorganic crystals
title_full_unstemmed Universal fragment descriptors for predicting properties of inorganic crystals
title_sort universal fragment descriptors for predicting properties of inorganic crystals
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/e51aabf9bad84fe6a8a7bf233cac04c5
work_keys_str_mv AT olexandrisayev universalfragmentdescriptorsforpredictingpropertiesofinorganiccrystals
AT coreyoses universalfragmentdescriptorsforpredictingpropertiesofinorganiccrystals
AT cormactoher universalfragmentdescriptorsforpredictingpropertiesofinorganiccrystals
AT ericgossett universalfragmentdescriptorsforpredictingpropertiesofinorganiccrystals
AT stefanocurtarolo universalfragmentdescriptorsforpredictingpropertiesofinorganiccrystals
AT alexandertropsha universalfragmentdescriptorsforpredictingpropertiesofinorganiccrystals
_version_ 1718386145853702144