The diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation
Grassland degradation is a retrogressive succession of grassland vegetation, which leads to the loss of biodiversity and the degradation of ecosystem functions. Soil microbiomes play critical roles in the functioning and services of grassland ecosystems, yet little is known about how their diversity...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e527213beb754780ab1e10d95f6b215b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e527213beb754780ab1e10d95f6b215b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e527213beb754780ab1e10d95f6b215b2021-12-01T04:57:30ZThe diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation1470-160X10.1016/j.ecolind.2021.107989https://doaj.org/article/e527213beb754780ab1e10d95f6b215b2021-10-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1470160X21006543https://doaj.org/toc/1470-160XGrassland degradation is a retrogressive succession of grassland vegetation, which leads to the loss of biodiversity and the degradation of ecosystem functions. Soil microbiomes play critical roles in the functioning and services of grassland ecosystems, yet little is known about how their diversity, structure and co-occurrence network characteristics respond to grassland degradation. Here, we used lllumina Miseq technique to evaluate soil bacterial and fungal communities in a meadow steppe with different degrees of degradation in Northeastern China. Our results showed that Actinobacteria, Proteobacteria, and Chloroflexi and Acidobacteria were the dominant bacterial phyla, while Ascomycota, Basidiomycota, and Zygomycota were the predominant fungal phyla. The relative abundance of taxa assigned to Actinobacteria, Gemmatimonadetes, Firmicutes, and Deinococcus-Thermus increased with increasing degradation degrees, whereas those affiliated with Acidobacteria and Nitrospirae showed a decreasing pattern. Compared to bacteria, the relative abundance of most fungal phyla decreased gradually along the degradation gradient. Bacterial Shannon diversity index possessed a similar hump pattern, while fungal diversity decreased with increasing degree of grassland degradation. Bacterial and fungal communities have different responses to grassland degradation, indicating that fungi are more sensitive to grassland degradation than bacteria. Both bacterial and fungal community structures were significantly different among the three sites. Changes in soil bacterial and fungal community structures were best explained by soil salinity and pH. Plant diversity and nitrogen concentration in aboveground plant tissues were also important factors for regulating fungal communities. Co-occurrence network analysis revealed that microbial taxa increased positive interactions and average degree to strengthen the adaptability of microorganisms to grassland degradation. These findings could enhance our understanding of the formation and maintenance of microbial community diversity in degraded grasslands and the development of a new indicator for grassland ecosystem management.Xuefeng WuJingjing YangHang RuanShengnan WangYurong YangIqra NaeemLing WangLee LiuDeli WangElsevierarticleGrassland degradationSoil bacteriaSoil fungiMicrobial diversityCommunity structureCo-occurrence networkEcologyQH540-549.5ENEcological Indicators, Vol 129, Iss , Pp 107989- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Grassland degradation Soil bacteria Soil fungi Microbial diversity Community structure Co-occurrence network Ecology QH540-549.5 |
spellingShingle |
Grassland degradation Soil bacteria Soil fungi Microbial diversity Community structure Co-occurrence network Ecology QH540-549.5 Xuefeng Wu Jingjing Yang Hang Ruan Shengnan Wang Yurong Yang Iqra Naeem Ling Wang Lee Liu Deli Wang The diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation |
description |
Grassland degradation is a retrogressive succession of grassland vegetation, which leads to the loss of biodiversity and the degradation of ecosystem functions. Soil microbiomes play critical roles in the functioning and services of grassland ecosystems, yet little is known about how their diversity, structure and co-occurrence network characteristics respond to grassland degradation. Here, we used lllumina Miseq technique to evaluate soil bacterial and fungal communities in a meadow steppe with different degrees of degradation in Northeastern China. Our results showed that Actinobacteria, Proteobacteria, and Chloroflexi and Acidobacteria were the dominant bacterial phyla, while Ascomycota, Basidiomycota, and Zygomycota were the predominant fungal phyla. The relative abundance of taxa assigned to Actinobacteria, Gemmatimonadetes, Firmicutes, and Deinococcus-Thermus increased with increasing degradation degrees, whereas those affiliated with Acidobacteria and Nitrospirae showed a decreasing pattern. Compared to bacteria, the relative abundance of most fungal phyla decreased gradually along the degradation gradient. Bacterial Shannon diversity index possessed a similar hump pattern, while fungal diversity decreased with increasing degree of grassland degradation. Bacterial and fungal communities have different responses to grassland degradation, indicating that fungi are more sensitive to grassland degradation than bacteria. Both bacterial and fungal community structures were significantly different among the three sites. Changes in soil bacterial and fungal community structures were best explained by soil salinity and pH. Plant diversity and nitrogen concentration in aboveground plant tissues were also important factors for regulating fungal communities. Co-occurrence network analysis revealed that microbial taxa increased positive interactions and average degree to strengthen the adaptability of microorganisms to grassland degradation. These findings could enhance our understanding of the formation and maintenance of microbial community diversity in degraded grasslands and the development of a new indicator for grassland ecosystem management. |
format |
article |
author |
Xuefeng Wu Jingjing Yang Hang Ruan Shengnan Wang Yurong Yang Iqra Naeem Ling Wang Lee Liu Deli Wang |
author_facet |
Xuefeng Wu Jingjing Yang Hang Ruan Shengnan Wang Yurong Yang Iqra Naeem Ling Wang Lee Liu Deli Wang |
author_sort |
Xuefeng Wu |
title |
The diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation |
title_short |
The diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation |
title_full |
The diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation |
title_fullStr |
The diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation |
title_full_unstemmed |
The diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation |
title_sort |
diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/e527213beb754780ab1e10d95f6b215b |
work_keys_str_mv |
AT xuefengwu thediversityandcooccurrencenetworkofsoilbacterialandfungalcommunitiesandtheirimplicationsforanewindicatorofgrasslanddegradation AT jingjingyang thediversityandcooccurrencenetworkofsoilbacterialandfungalcommunitiesandtheirimplicationsforanewindicatorofgrasslanddegradation AT hangruan thediversityandcooccurrencenetworkofsoilbacterialandfungalcommunitiesandtheirimplicationsforanewindicatorofgrasslanddegradation AT shengnanwang thediversityandcooccurrencenetworkofsoilbacterialandfungalcommunitiesandtheirimplicationsforanewindicatorofgrasslanddegradation AT yurongyang thediversityandcooccurrencenetworkofsoilbacterialandfungalcommunitiesandtheirimplicationsforanewindicatorofgrasslanddegradation AT iqranaeem thediversityandcooccurrencenetworkofsoilbacterialandfungalcommunitiesandtheirimplicationsforanewindicatorofgrasslanddegradation AT lingwang thediversityandcooccurrencenetworkofsoilbacterialandfungalcommunitiesandtheirimplicationsforanewindicatorofgrasslanddegradation AT leeliu thediversityandcooccurrencenetworkofsoilbacterialandfungalcommunitiesandtheirimplicationsforanewindicatorofgrasslanddegradation AT deliwang thediversityandcooccurrencenetworkofsoilbacterialandfungalcommunitiesandtheirimplicationsforanewindicatorofgrasslanddegradation AT xuefengwu diversityandcooccurrencenetworkofsoilbacterialandfungalcommunitiesandtheirimplicationsforanewindicatorofgrasslanddegradation AT jingjingyang diversityandcooccurrencenetworkofsoilbacterialandfungalcommunitiesandtheirimplicationsforanewindicatorofgrasslanddegradation AT hangruan diversityandcooccurrencenetworkofsoilbacterialandfungalcommunitiesandtheirimplicationsforanewindicatorofgrasslanddegradation AT shengnanwang diversityandcooccurrencenetworkofsoilbacterialandfungalcommunitiesandtheirimplicationsforanewindicatorofgrasslanddegradation AT yurongyang diversityandcooccurrencenetworkofsoilbacterialandfungalcommunitiesandtheirimplicationsforanewindicatorofgrasslanddegradation AT iqranaeem diversityandcooccurrencenetworkofsoilbacterialandfungalcommunitiesandtheirimplicationsforanewindicatorofgrasslanddegradation AT lingwang diversityandcooccurrencenetworkofsoilbacterialandfungalcommunitiesandtheirimplicationsforanewindicatorofgrasslanddegradation AT leeliu diversityandcooccurrencenetworkofsoilbacterialandfungalcommunitiesandtheirimplicationsforanewindicatorofgrasslanddegradation AT deliwang diversityandcooccurrencenetworkofsoilbacterialandfungalcommunitiesandtheirimplicationsforanewindicatorofgrasslanddegradation |
_version_ |
1718405696174686208 |