A genomic signature for accurate classification and prediction of clinical outcomes in cancer patients treated with immune checkpoint blockade immunotherapy
Abstract Tumor mutational burden (TMB) is associated with clinical response to immunotherapy, but application has been limited to a subset of cancer patients. We hypothesized that advanced machine-learning and proper modeling could identify mutations that classify patients most likely to derive clin...
Enregistré dans:
Auteurs principaux: | Mei Lu, Kuan-Han Hank Wu, Sheri Trudeau, Margaret Jiang, Joe Zhao, Elliott Fan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e53d57ff3e1b4551bda14782b610fbfc |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
CANCER IMMUNOTHERAPY BASED ON THE BLOCKADE OF IMMUNE CHECKPOINTS
par: A. V. Bogolyubova, et autres
Publié: (2015) -
Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1
par: Marine Leclerc, et autres
Publié: (2019) -
Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy
par: Qian Chen, et autres
Publié: (2016) -
Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy
par: Ju Yeon Lee, et autres
Publié: (2016) -
Nanosonosensitizer-Augmented Sonodynamic Therapy Combined with Checkpoint Blockade for Cancer Immunotherapy
par: Lin X, et autres
Publié: (2021)