Screening Referable Diabetic Retinopathy Using a Semi-automated Deep Learning Algorithm Assisted Approach
Purpose: To assess the accuracy and efficacy of a semi-automated deep learning algorithm (DLA) assisted approach to detect vision-threatening diabetic retinopathy (DR).Methods: We developed a two-step semi-automated DLA-assisted approach to grade fundus photographs for vision-threatening referable D...
Guardado en:
Autores principales: | Yueye Wang, Danli Shi, Zachary Tan, Yong Niu, Yu Jiang, Ruilin Xiong, Guankai Peng, Mingguang He |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e5415a0bd07849f2b6c9bdee5cbfde62 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Impact of Retinopathy and Systemic Vascular Comorbidities on All-Cause Mortality
por: Zhuoting Zhu, et al.
Publicado: (2021) -
Evaluating the Viability of a Smartphone-Based Annotation Tool for Faster and Accurate Image Labelling for Artificial Intelligence in Diabetic Retinopathy
por: Morya AK, et al.
Publicado: (2021) -
Exactitud de tamizaje de retinopatía diabética: inteligencia artificial versus tecnólogos médicos entrenados
por: Ibáñez-bruron,María c., et al.
Publicado: (2021) -
Procedures of Establishing a Well-annotated Database of Color Fundus Photography of Diabetic Retinopathy for Artificial Intelligence Research
por: YU Weihong, et al.
Publicado: (2021) -
Current Situation and Prospect of Teleophthalmology
por: ZHANG Xiao, et al.
Publicado: (2021)