Determining molecular properties with differential mobility spectrometry and machine learning
The fast and accurate determination of molecular properties is particularly crucial in drug discovery. Here, the authors employ supervised machine learning to treat differential mobility spectrometry – mass spectrometry data for ten classes of drug candidates and predict several condensed-phase prop...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e5545143641641f8afbe1987126bcf2f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The fast and accurate determination of molecular properties is particularly crucial in drug discovery. Here, the authors employ supervised machine learning to treat differential mobility spectrometry – mass spectrometry data for ten classes of drug candidates and predict several condensed-phase properties. |
---|