Determining molecular properties with differential mobility spectrometry and machine learning
The fast and accurate determination of molecular properties is particularly crucial in drug discovery. Here, the authors employ supervised machine learning to treat differential mobility spectrometry – mass spectrometry data for ten classes of drug candidates and predict several condensed-phase prop...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e5545143641641f8afbe1987126bcf2f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e5545143641641f8afbe1987126bcf2f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e5545143641641f8afbe1987126bcf2f2021-12-02T16:49:18ZDetermining molecular properties with differential mobility spectrometry and machine learning10.1038/s41467-018-07616-w2041-1723https://doaj.org/article/e5545143641641f8afbe1987126bcf2f2018-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07616-whttps://doaj.org/toc/2041-1723The fast and accurate determination of molecular properties is particularly crucial in drug discovery. Here, the authors employ supervised machine learning to treat differential mobility spectrometry – mass spectrometry data for ten classes of drug candidates and predict several condensed-phase properties.Stephen W. C. WalkerAhdia AnwarJarrod M. PsutkaJeff CrouseChang LiuJ. C. Yves Le BlancJustin MontgomeryGilles H. GoetzJohn S. JaniszewskiJ. Larry CampbellW. Scott HopkinsNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-7 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Stephen W. C. Walker Ahdia Anwar Jarrod M. Psutka Jeff Crouse Chang Liu J. C. Yves Le Blanc Justin Montgomery Gilles H. Goetz John S. Janiszewski J. Larry Campbell W. Scott Hopkins Determining molecular properties with differential mobility spectrometry and machine learning |
description |
The fast and accurate determination of molecular properties is particularly crucial in drug discovery. Here, the authors employ supervised machine learning to treat differential mobility spectrometry – mass spectrometry data for ten classes of drug candidates and predict several condensed-phase properties. |
format |
article |
author |
Stephen W. C. Walker Ahdia Anwar Jarrod M. Psutka Jeff Crouse Chang Liu J. C. Yves Le Blanc Justin Montgomery Gilles H. Goetz John S. Janiszewski J. Larry Campbell W. Scott Hopkins |
author_facet |
Stephen W. C. Walker Ahdia Anwar Jarrod M. Psutka Jeff Crouse Chang Liu J. C. Yves Le Blanc Justin Montgomery Gilles H. Goetz John S. Janiszewski J. Larry Campbell W. Scott Hopkins |
author_sort |
Stephen W. C. Walker |
title |
Determining molecular properties with differential mobility spectrometry and machine learning |
title_short |
Determining molecular properties with differential mobility spectrometry and machine learning |
title_full |
Determining molecular properties with differential mobility spectrometry and machine learning |
title_fullStr |
Determining molecular properties with differential mobility spectrometry and machine learning |
title_full_unstemmed |
Determining molecular properties with differential mobility spectrometry and machine learning |
title_sort |
determining molecular properties with differential mobility spectrometry and machine learning |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/e5545143641641f8afbe1987126bcf2f |
work_keys_str_mv |
AT stephenwcwalker determiningmolecularpropertieswithdifferentialmobilityspectrometryandmachinelearning AT ahdiaanwar determiningmolecularpropertieswithdifferentialmobilityspectrometryandmachinelearning AT jarrodmpsutka determiningmolecularpropertieswithdifferentialmobilityspectrometryandmachinelearning AT jeffcrouse determiningmolecularpropertieswithdifferentialmobilityspectrometryandmachinelearning AT changliu determiningmolecularpropertieswithdifferentialmobilityspectrometryandmachinelearning AT jcyvesleblanc determiningmolecularpropertieswithdifferentialmobilityspectrometryandmachinelearning AT justinmontgomery determiningmolecularpropertieswithdifferentialmobilityspectrometryandmachinelearning AT gilleshgoetz determiningmolecularpropertieswithdifferentialmobilityspectrometryandmachinelearning AT johnsjaniszewski determiningmolecularpropertieswithdifferentialmobilityspectrometryandmachinelearning AT jlarrycampbell determiningmolecularpropertieswithdifferentialmobilityspectrometryandmachinelearning AT wscotthopkins determiningmolecularpropertieswithdifferentialmobilityspectrometryandmachinelearning |
_version_ |
1718383369284222976 |