A deep bidirectional recurrent neural network for identification of SARS-CoV-2 from viral genome sequences
In this work, Deep Bidirectional Recurrent Neural Networks (BRNNs) models were implemented based on both Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) cells in order to distinguish between genome sequence of SARS-CoV-2 and other Corona Virus strains such as SARS-CoV and MERS-CoV, Comm...
Guardado en:
Autores principales: | Mohanad A. Deif, Ahmed A. A. Solyman, Mehrdad Ahmadi Kamarposhti, Shahab S. Band, Rania E. Hammam |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e55ce32d10b740d4a30e6d7e3bf5a80c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press
por: Balduíno César Mateus, et al.
Publicado: (2021) -
Bangla hate speech detection on social media using attention-based recurrent neural network
por: Das Amit Kumar, et al.
Publicado: (2021) -
Universal gated recurrent unit-based 3D localization method for ultra-wideband systems
por: Doan Tan Anh Nguyen, et al.
Publicado: (2021) -
Machine learning approach for confirmation of COVID-19 cases: positive, negative, death and release
por: Shawni Dutta, et al.
Publicado: (2020) -
Analysis of Gradient Vanishing of RNNs and Performance Comparison
por: Seol-Hyun Noh
Publicado: (2021)