Mining pure, strict epistatic interactions from high-dimensional datasets: ameliorating the curse of dimensionality.
<h4>Background</h4>The interaction between loci to affect phenotype is called epistasis. It is strict epistasis if no proper subset of the interacting loci exhibits a marginal effect. For many diseases, it is likely that unknown epistatic interactions affect disease susceptibility. A dif...
Guardado en:
Autores principales: | Xia Jiang, Richard E Neapolitan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e585593f398545f6863c98425f5dd319 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization
por: Michael Grau, et al.
Publicado: (2019) -
Learning epistatic gene interactions from perturbation screens.
por: Kieran Elmes, et al.
Publicado: (2021) -
Circular convolution-based feature extraction algorithm for classification of high-dimensional datasets
por: Tajanpure Rupali, et al.
Publicado: (2021) -
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
por: Emmanuel Pintelas, et al.
Publicado: (2021) -
Elitist Binary Wolf Search Algorithm for Heuristic Feature Selection in High-Dimensional Bioinformatics Datasets
por: Jinyan Li, et al.
Publicado: (2017)