Combined nanopore and single-molecule real-time sequencing survey of human betaherpesvirus 5 transcriptome

Abstract Long-read sequencing (LRS), a powerful novel approach, is able to read full-length transcripts and confers a major advantage over the earlier gold standard short-read sequencing in the efficiency of identifying for example polycistronic transcripts and transcript isoforms, including transcr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Balázs Kakuk, Dóra Tombácz, Zsolt Balázs, Norbert Moldován, Zsolt Csabai, Gábor Torma, Klára Megyeri, Michael Snyder, Zsolt Boldogkői
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e5ae7a377ae74350a2bdba4034307c60
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e5ae7a377ae74350a2bdba4034307c60
record_format dspace
spelling oai:doaj.org-article:e5ae7a377ae74350a2bdba4034307c602021-12-02T18:30:51ZCombined nanopore and single-molecule real-time sequencing survey of human betaherpesvirus 5 transcriptome10.1038/s41598-021-93593-y2045-2322https://doaj.org/article/e5ae7a377ae74350a2bdba4034307c602021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-93593-yhttps://doaj.org/toc/2045-2322Abstract Long-read sequencing (LRS), a powerful novel approach, is able to read full-length transcripts and confers a major advantage over the earlier gold standard short-read sequencing in the efficiency of identifying for example polycistronic transcripts and transcript isoforms, including transcript length- and splice variants. In this work, we profile the human cytomegalovirus transcriptome using two third-generation LRS platforms: the Sequel from Pacific BioSciences, and MinION from Oxford Nanopore Technologies. We carried out both cDNA and direct RNA sequencing, and applied the LoRTIA software, developed in our laboratory, for the transcript annotations. This study identified a large number of novel transcript variants, including splice isoforms and transcript start and end site isoforms, as well as putative mRNAs with truncated in-frame ORFs (located within the larger ORFs of the canonical mRNAs), which potentially encode N-terminally truncated polypeptides. Our work also disclosed a highly complex meshwork of transcriptional read-throughs and overlaps.Balázs KakukDóra TombáczZsolt BalázsNorbert MoldovánZsolt CsabaiGábor TormaKlára MegyeriMichael SnyderZsolt BoldogkőiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Balázs Kakuk
Dóra Tombácz
Zsolt Balázs
Norbert Moldován
Zsolt Csabai
Gábor Torma
Klára Megyeri
Michael Snyder
Zsolt Boldogkői
Combined nanopore and single-molecule real-time sequencing survey of human betaherpesvirus 5 transcriptome
description Abstract Long-read sequencing (LRS), a powerful novel approach, is able to read full-length transcripts and confers a major advantage over the earlier gold standard short-read sequencing in the efficiency of identifying for example polycistronic transcripts and transcript isoforms, including transcript length- and splice variants. In this work, we profile the human cytomegalovirus transcriptome using two third-generation LRS platforms: the Sequel from Pacific BioSciences, and MinION from Oxford Nanopore Technologies. We carried out both cDNA and direct RNA sequencing, and applied the LoRTIA software, developed in our laboratory, for the transcript annotations. This study identified a large number of novel transcript variants, including splice isoforms and transcript start and end site isoforms, as well as putative mRNAs with truncated in-frame ORFs (located within the larger ORFs of the canonical mRNAs), which potentially encode N-terminally truncated polypeptides. Our work also disclosed a highly complex meshwork of transcriptional read-throughs and overlaps.
format article
author Balázs Kakuk
Dóra Tombácz
Zsolt Balázs
Norbert Moldován
Zsolt Csabai
Gábor Torma
Klára Megyeri
Michael Snyder
Zsolt Boldogkői
author_facet Balázs Kakuk
Dóra Tombácz
Zsolt Balázs
Norbert Moldován
Zsolt Csabai
Gábor Torma
Klára Megyeri
Michael Snyder
Zsolt Boldogkői
author_sort Balázs Kakuk
title Combined nanopore and single-molecule real-time sequencing survey of human betaherpesvirus 5 transcriptome
title_short Combined nanopore and single-molecule real-time sequencing survey of human betaherpesvirus 5 transcriptome
title_full Combined nanopore and single-molecule real-time sequencing survey of human betaherpesvirus 5 transcriptome
title_fullStr Combined nanopore and single-molecule real-time sequencing survey of human betaherpesvirus 5 transcriptome
title_full_unstemmed Combined nanopore and single-molecule real-time sequencing survey of human betaherpesvirus 5 transcriptome
title_sort combined nanopore and single-molecule real-time sequencing survey of human betaherpesvirus 5 transcriptome
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/e5ae7a377ae74350a2bdba4034307c60
work_keys_str_mv AT balazskakuk combinednanoporeandsinglemoleculerealtimesequencingsurveyofhumanbetaherpesvirus5transcriptome
AT doratombacz combinednanoporeandsinglemoleculerealtimesequencingsurveyofhumanbetaherpesvirus5transcriptome
AT zsoltbalazs combinednanoporeandsinglemoleculerealtimesequencingsurveyofhumanbetaherpesvirus5transcriptome
AT norbertmoldovan combinednanoporeandsinglemoleculerealtimesequencingsurveyofhumanbetaherpesvirus5transcriptome
AT zsoltcsabai combinednanoporeandsinglemoleculerealtimesequencingsurveyofhumanbetaherpesvirus5transcriptome
AT gabortorma combinednanoporeandsinglemoleculerealtimesequencingsurveyofhumanbetaherpesvirus5transcriptome
AT klaramegyeri combinednanoporeandsinglemoleculerealtimesequencingsurveyofhumanbetaherpesvirus5transcriptome
AT michaelsnyder combinednanoporeandsinglemoleculerealtimesequencingsurveyofhumanbetaherpesvirus5transcriptome
AT zsoltboldogkoi combinednanoporeandsinglemoleculerealtimesequencingsurveyofhumanbetaherpesvirus5transcriptome
_version_ 1718378012151382016