Electrochemical sensing platform for simultaneous detection of 6-mercaptopurine and 6-thioguanine using RGO-Cu2O/Fe2O3 modified screen-printed graphite electrode
A sensitive electrochemical sensor was developed using reduced graphene oxide RGO-Cu2O/Fe2O3 nanocomposite for 6-mercaptopurine detection based on a facile fabrication method. The surface morphology and structural composition of this nanocomposite was evaluated by X-ray diffraction (XRD), field emi...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
International Association of Physical Chemists (IAPC)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e5b39f342e684ff4b4bc1e7f9ec59d65 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | A sensitive electrochemical sensor was developed using reduced graphene oxide RGO-Cu2O/Fe2O3 nanocomposite for 6-mercaptopurine detection based on a facile fabrication method. The surface morphology and structural composition of this nanocomposite was evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and Fourier transform infrared (FT-IR) spectroscopy. The screen-printed graphite electrode (SPGE) modified with RGO-Cu2O/Fe2O3 nanocomposite (RGO-Cu2O/Fe2O3/SPGE) indicated excellent electrochemical properties to detect 6-mercaptopurine. The linear dynamic range was estimated between 0.05 and 400.0 μM for 6-mercaptopurine detection, with a limit of detection of 0.03 μM. Also, RGO-Cu2O/Fe2O3/SPGE sensor showed good activity for simultaneous detection of 6-mercaptopurine and 6-thioguanine. In the coexistence system of 6-mercaptopurine and 6-thioguanine, two clear and well-isolated voltammetric peaks were obtained by differential pulse voltammetry (DPV). Additionally, the proposed sensor was examined for applicability by determining 6-mercaptopurine and 6-thioguanine in real samples, and the recovery in the range of 97.5-103.0 % was obtained.
|
---|