Monte Carlo-Based Error Propagation for a More Reliable Regression Analysis across Specific Rates in Bioprocesses
During process development, bioprocess data need to be converted into applicable knowledge. Therefore, it is crucial to evaluate the obtained data under the usage of transparent and reliable data reduction and correlation techniques. Within this contribution, we show a generic Monte Carlo error prop...
Guardado en:
Autores principales: | Julian Kager, Christoph Herwig |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e5c10365d4c74c319849550aa1cdbc9e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Utilising Partial Momentum Refreshment in Separable Shadow Hamiltonian Hybrid Monte Carlo
por: Wilson Tsakane Mongwe, et al.
Publicado: (2021) -
Monte Carlo methods and applications
Publicado: (1995) -
Adaptive Magnetic Hamiltonian Monte Carlo
por: Wilson Tsakane Mongwe, et al.
Publicado: (2021) -
On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model
por: Siow Woon Jeng, et al.
Publicado: (2021) -
Some Considerations on the Energy Deposition During a RIA Transient Based On Monte Carlo Simulations
por: Bartos Julia, et al.
Publicado: (2021)