A multi-sample approach increases the accuracy of transcript assembly
Transcript assembly is an important step in analysis of RNA-seq data whose accuracy influences downstream quantification, detection and characterization of alternative splice variants. Here, the authors develop PsiCLASS, a transcript assembler leveraging simultaneous analysis of multiple RNA-seq sam...
Enregistré dans:
Auteurs principaux: | Li Song, Sarven Sabunciyan, Guangyu Yang, Liliana Florea |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e5c2fe458e40423f92d2ea2ad8d1931e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Benchmarking different approaches for Norovirus genome assembly in metagenome samples
par: Azahara Fuentes-Trillo, et autres
Publié: (2021) -
Improving the Accuracy of Land Cover Mapping by Distributing Training Samples
par: Chenxi Li, et autres
Publié: (2021) -
Neural networks for increased accuracy of allergenic pollen monitoring
par: Marcel Polling, et autres
Publié: (2021) -
Diagnostic accuracy of cytology for the detection of endometrial cancer in urine and vaginal samples
par: Helena O’Flynn, et autres
Publié: (2021) -
Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions
par: S. M. Mortuza, et autres
Publié: (2021)