Noise diagnostics of graphene interconnects for atomic-scale electronics

Abstract Graphene nanogaps are considered as essential building blocks of two-dimensional electronic circuits, as they offer the possibility to interconnect a broad range of atomic-scale objects. Here we provide an insight into the microscopic processes taking place during the formation of graphene...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: László Pósa, Zoltán Balogh, Dávid Krisztián, Péter Balázs, Botond Sánta, Roman Furrer, Miklós Csontos, András Halbritter
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/e5cefa9a947d4a70bde4bfa82450cec2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Graphene nanogaps are considered as essential building blocks of two-dimensional electronic circuits, as they offer the possibility to interconnect a broad range of atomic-scale objects. Here we provide an insight into the microscopic processes taking place during the formation of graphene nanogaps through the detailed analysis of their low-frequency noise properties. Following the evolution of the noise level, we identify the fundamentally different regimes throughout the nanogap formation. By modeling the resistance and bias dependence of the noise, we resolve the major noise-generating processes: atomic-scale junction-width fluctuations in the nanojunction regime and sub-atomic gap-size fluctuations in the nanogap regime. As a milestone toward graphene-based atomic electronics, our results facilitate the automation of an optimized electrical breakdown protocol for high-yield graphene nanogap fabrication.