Metamodeling of the Energy Consumption of Buildings with Daylight Harvesting – Application of Artificial Neural Networks Sensitive to Orientation
Daylight harvesting is a well-known strategy to address building energy efficiency. However, few simplified tools can evaluate its dual impact on lighting and air conditioning energy consumption. Artificial neural networks (ANNs) have been used as metamodels to predict energy consumption with high p...
Guardado en:
Autores principales: | Raphaela Walger da Fonseca, Fernando Oscar Ruttkay Pereira |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SolarLits
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e5cfcd2176074507b5b5a1fa17a7e9fb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Development of a Machine-Learning Framework for Overall Daylight and Visual Comfort Assessment in Early Design Stages
por: Hanieh Nourkojouri, et al.
Publicado: (2021) -
Simulating the Impact of Daytime Calibration in the Behavior of a Closed Loop Proportional Lighting Control System
por: Aris Tsangrassoulis, et al.
Publicado: (2021) -
Metamodels’ Development for High Pressure Die Casting of Aluminum Alloy
por: Eva Anglada, et al.
Publicado: (2021) -
A User-Oriented Local Coastal Flooding Early Warning System Using Metamodelling Techniques
por: Déborah Idier, et al.
Publicado: (2021) -
A COMPARATIVE STUDY ON DAYLIGHT PERFORMANCE OF KONYA MOSQUES BUILT IN ANATOLIAN SELJUK AND OTTOMAN PERIOD
por: Ayşıl Coşkuner Pamuk, et al.
Publicado: (2020)