Suspended sediment load prediction using long short-term memory neural network
Abstract Rivers carry suspended sediments along with their flow. These sediments deposit at different places depending on the discharge and course of the river. However, the deposition of these sediments impacts environmental health, agricultural activities, and portable water sources. Deposition of...
Guardado en:
Autores principales: | Nouar AlDahoul, Yusuf Essam, Pavitra Kumar, Ali Najah Ahmed, Mohsen Sherif, Ahmed Sefelnasr, Ahmed Elshafie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e5e511edf72b45ff8de066d897ce0527 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Enhancement of nitrogen prediction accuracy through a new hybrid model using ant colony optimization and an Elman neural network
por: Pavitra Kumar, et al.
Publicado: (2021) -
An assessment of sedimentation in Terengganu River, Malaysia using satellite imagery
por: Awatif Aziz, et al.
Publicado: (2021) -
Developing machine learning algorithms for meteorological temperature and humidity forecasting at Terengganu state in Malaysia
por: Marwah Sattar Hanoon, et al.
Publicado: (2021) -
Sediment Transport Dynamism in the Confluence Area of Two Rivers Transporting Mainly Suspended Sediment Based on Sentinel-2 Satellite Images
por: Ahmed Mohsen, et al.
Publicado: (2021) -
Prediction of suspended sediment distributions using data mining algorithms
por: Yaser Mehri, et al.
Publicado: (2021)