Discovery of rare cells from voluminous single cell expression data
Algorithms designed to find rare cells in single cell RNA-seq data sets cannot cope with data sets containing tens of thousands of cells. Here the authors present Finder of Rare Entities (FiRE), an algorithm that uses the Sketching technique to assign a rareness score to every expression profile in...
Guardado en:
Autores principales: | Aashi Jindal, Prashant Gupta, Jayadeva, Debarka Sengupta |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e5f61881b96d473a964962f81525ffb9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
GapClust is a light-weight approach distinguishing rare cells from voluminous single cell expression profiles
por: Botao Fa, et al.
Publicado: (2021) -
Confronting false discoveries in single-cell differential expression
por: Jordan W. Squair, et al.
Publicado: (2021) -
Archean continental crust formed by magma hybridization and voluminous partial melting
por: Juan David Hernández-Montenegro, et al.
Publicado: (2021) -
An Integrated Preprocessing Approach for Exploring Single-Cell Gene Expression in Rare Cells
por: Junyi Shang, et al.
Publicado: (2019) -
Automated annotation of rare-cell types from single-cell RNA-sequencing data through synthetic oversampling
por: Saptarshi Bej, et al.
Publicado: (2021)