Powered flight in hatchling pterosaurs: evidence from wing form and bone strength
Abstract Competing views exist on the behaviour and lifestyle of pterosaurs during the earliest phases of life. A ‘flap-early’ model proposes that hatchlings were capable of independent life and flapping flight, a ‘fly-late’ model posits that juveniles were not flight capable until 50% of adult size...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e60b9478311a42179438207e6c37509e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e60b9478311a42179438207e6c37509e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e60b9478311a42179438207e6c37509e2021-12-02T16:17:28ZPowered flight in hatchling pterosaurs: evidence from wing form and bone strength10.1038/s41598-021-92499-z2045-2322https://doaj.org/article/e60b9478311a42179438207e6c37509e2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-92499-zhttps://doaj.org/toc/2045-2322Abstract Competing views exist on the behaviour and lifestyle of pterosaurs during the earliest phases of life. A ‘flap-early’ model proposes that hatchlings were capable of independent life and flapping flight, a ‘fly-late’ model posits that juveniles were not flight capable until 50% of adult size, and a ‘glide-early’ model requires that young juveniles were flight-capable but only able to glide. We test these models by quantifying the flight abilities of very young juvenile pterosaurs via analysis of wing bone strength, wing loading, wingspan and wing aspect ratios, primarily using data from embryonic and hatchling specimens of Pterodaustro guinazui and Sinopterus dongi. We argue that a young Sinopterus specimen has been mischaracterised as a distinct taxon. The humeri of pterosaur juveniles are similar in bending strength to those of adults and able to withstand launch and flight; wing size and wing aspect ratios of young juveniles are also in keeping with powered flight. We therefore reject the ‘fly-late’ and ‘glide-early’ models. We further show that young juveniles were excellent gliders, albeit not reliant on specialist gliding. The wing forms of very young juveniles differ significantly from larger individuals, meaning that variation in speed, manoeuvrability, take-off angle and so on was present across a species as it matured. Juveniles appear to have been adapted for flight in cluttered environments, in contrast to larger, older individuals. We propose on the basis of these conclusions that pterosaur species occupied distinct niches across ontogeny.Darren NaishMark P. WittonElizabeth Martin-SilverstoneNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Darren Naish Mark P. Witton Elizabeth Martin-Silverstone Powered flight in hatchling pterosaurs: evidence from wing form and bone strength |
description |
Abstract Competing views exist on the behaviour and lifestyle of pterosaurs during the earliest phases of life. A ‘flap-early’ model proposes that hatchlings were capable of independent life and flapping flight, a ‘fly-late’ model posits that juveniles were not flight capable until 50% of adult size, and a ‘glide-early’ model requires that young juveniles were flight-capable but only able to glide. We test these models by quantifying the flight abilities of very young juvenile pterosaurs via analysis of wing bone strength, wing loading, wingspan and wing aspect ratios, primarily using data from embryonic and hatchling specimens of Pterodaustro guinazui and Sinopterus dongi. We argue that a young Sinopterus specimen has been mischaracterised as a distinct taxon. The humeri of pterosaur juveniles are similar in bending strength to those of adults and able to withstand launch and flight; wing size and wing aspect ratios of young juveniles are also in keeping with powered flight. We therefore reject the ‘fly-late’ and ‘glide-early’ models. We further show that young juveniles were excellent gliders, albeit not reliant on specialist gliding. The wing forms of very young juveniles differ significantly from larger individuals, meaning that variation in speed, manoeuvrability, take-off angle and so on was present across a species as it matured. Juveniles appear to have been adapted for flight in cluttered environments, in contrast to larger, older individuals. We propose on the basis of these conclusions that pterosaur species occupied distinct niches across ontogeny. |
format |
article |
author |
Darren Naish Mark P. Witton Elizabeth Martin-Silverstone |
author_facet |
Darren Naish Mark P. Witton Elizabeth Martin-Silverstone |
author_sort |
Darren Naish |
title |
Powered flight in hatchling pterosaurs: evidence from wing form and bone strength |
title_short |
Powered flight in hatchling pterosaurs: evidence from wing form and bone strength |
title_full |
Powered flight in hatchling pterosaurs: evidence from wing form and bone strength |
title_fullStr |
Powered flight in hatchling pterosaurs: evidence from wing form and bone strength |
title_full_unstemmed |
Powered flight in hatchling pterosaurs: evidence from wing form and bone strength |
title_sort |
powered flight in hatchling pterosaurs: evidence from wing form and bone strength |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/e60b9478311a42179438207e6c37509e |
work_keys_str_mv |
AT darrennaish poweredflightinhatchlingpterosaursevidencefromwingformandbonestrength AT markpwitton poweredflightinhatchlingpterosaursevidencefromwingformandbonestrength AT elizabethmartinsilverstone poweredflightinhatchlingpterosaursevidencefromwingformandbonestrength |
_version_ |
1718384264612937728 |