Aplicação de Redes Neurais Polinomiais na Previsão do Ibovespa e Merval

This article analyses the efficiency of Group Method of Data Handling (GMDH) polynomial neural networks when anticipating return, on a monthly basis, on the return of the main Brazilian (Ibovespa) and Argentinean (Merval) market indicators. Initially, in order to determine the exogenous variable, we...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Everton Anger Cavalheiro, Kelmara Mendes Vieira, Paulo Sérgio Ceretta, José Carlos Severo Correa, Carlos Frederico de Oliveira Cunha
Formato: article
Lenguaje:PT
Publicado: Universidade Regional do Noroeste do Estado do Rio Grande do Sul 2011
Materias:
co
Acceso en línea:https://doaj.org/article/e60de56adc4248a1b3a2c91ad88aa845
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This article analyses the efficiency of Group Method of Data Handling (GMDH) polynomial neural networks when anticipating return, on a monthly basis, on the return of the main Brazilian (Ibovespa) and Argentinean (Merval) market indicators. Initially, in order to determine the exogenous variable, we calculated the logarithmical return on each index. Afterwards, in order to determine the endogenous variables, we have performed t-1, t-2 and t-3 lags on the exogenous variable. We computed up to nine front fed layers. Results suggest some predictability on both markets, denoting some inefficiency. Inefficiency, especially on the Argentinean market, is validated by the additional causality Granger tests that demonstrate the influence of the São Paulo Stock Market over the Buenos Aires Stock Market and no such influence the other way round.