Aplicação de Redes Neurais Polinomiais na Previsão do Ibovespa e Merval

This article analyses the efficiency of Group Method of Data Handling (GMDH) polynomial neural networks when anticipating return, on a monthly basis, on the return of the main Brazilian (Ibovespa) and Argentinean (Merval) market indicators. Initially, in order to determine the exogenous variable, we...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Everton Anger Cavalheiro, Kelmara Mendes Vieira, Paulo Sérgio Ceretta, José Carlos Severo Correa, Carlos Frederico de Oliveira Cunha
Formato: article
Lenguaje:PT
Publicado: Universidade Regional do Noroeste do Estado do Rio Grande do Sul 2011
Materias:
co
Acceso en línea:https://doaj.org/article/e60de56adc4248a1b3a2c91ad88aa845
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e60de56adc4248a1b3a2c91ad88aa845
record_format dspace
spelling oai:doaj.org-article:e60de56adc4248a1b3a2c91ad88aa8452021-11-11T15:16:05ZAplicação de Redes Neurais Polinomiais na Previsão do Ibovespa e Merval1678-48552237-6453https://doaj.org/article/e60de56adc4248a1b3a2c91ad88aa8452011-01-01T00:00:00Zhttp://www.redalyc.org/articulo.oa?id=75220806009https://doaj.org/toc/1678-4855https://doaj.org/toc/2237-6453This article analyses the efficiency of Group Method of Data Handling (GMDH) polynomial neural networks when anticipating return, on a monthly basis, on the return of the main Brazilian (Ibovespa) and Argentinean (Merval) market indicators. Initially, in order to determine the exogenous variable, we calculated the logarithmical return on each index. Afterwards, in order to determine the endogenous variables, we have performed t-1, t-2 and t-3 lags on the exogenous variable. We computed up to nine front fed layers. Results suggest some predictability on both markets, denoting some inefficiency. Inefficiency, especially on the Argentinean market, is validated by the additional causality Granger tests that demonstrate the influence of the São Paulo Stock Market over the Buenos Aires Stock Market and no such influence the other way round.Everton Anger CavalheiroKelmara Mendes VieiraPaulo Sérgio CerettaJosé Carlos Severo CorreaCarlos Frederico de Oliveira CunhaUniversidade Regional do Noroeste do Estado do Rio Grande do Sularticleneural networkscointegrationgranger causalityEconomic growth, development, planningHD72-88PTDesenvolvimento em Questão, Vol 9, Iss 18, Pp 196-224 (2011)
institution DOAJ
collection DOAJ
language PT
topic neural networks
co
integration
granger causality
Economic growth, development, planning
HD72-88
spellingShingle neural networks
co
integration
granger causality
Economic growth, development, planning
HD72-88
Everton Anger Cavalheiro
Kelmara Mendes Vieira
Paulo Sérgio Ceretta
José Carlos Severo Correa
Carlos Frederico de Oliveira Cunha
Aplicação de Redes Neurais Polinomiais na Previsão do Ibovespa e Merval
description This article analyses the efficiency of Group Method of Data Handling (GMDH) polynomial neural networks when anticipating return, on a monthly basis, on the return of the main Brazilian (Ibovespa) and Argentinean (Merval) market indicators. Initially, in order to determine the exogenous variable, we calculated the logarithmical return on each index. Afterwards, in order to determine the endogenous variables, we have performed t-1, t-2 and t-3 lags on the exogenous variable. We computed up to nine front fed layers. Results suggest some predictability on both markets, denoting some inefficiency. Inefficiency, especially on the Argentinean market, is validated by the additional causality Granger tests that demonstrate the influence of the São Paulo Stock Market over the Buenos Aires Stock Market and no such influence the other way round.
format article
author Everton Anger Cavalheiro
Kelmara Mendes Vieira
Paulo Sérgio Ceretta
José Carlos Severo Correa
Carlos Frederico de Oliveira Cunha
author_facet Everton Anger Cavalheiro
Kelmara Mendes Vieira
Paulo Sérgio Ceretta
José Carlos Severo Correa
Carlos Frederico de Oliveira Cunha
author_sort Everton Anger Cavalheiro
title Aplicação de Redes Neurais Polinomiais na Previsão do Ibovespa e Merval
title_short Aplicação de Redes Neurais Polinomiais na Previsão do Ibovespa e Merval
title_full Aplicação de Redes Neurais Polinomiais na Previsão do Ibovespa e Merval
title_fullStr Aplicação de Redes Neurais Polinomiais na Previsão do Ibovespa e Merval
title_full_unstemmed Aplicação de Redes Neurais Polinomiais na Previsão do Ibovespa e Merval
title_sort aplicação de redes neurais polinomiais na previsão do ibovespa e merval
publisher Universidade Regional do Noroeste do Estado do Rio Grande do Sul
publishDate 2011
url https://doaj.org/article/e60de56adc4248a1b3a2c91ad88aa845
work_keys_str_mv AT evertonangercavalheiro aplicacaoderedesneuraispolinomiaisnaprevisaodoibovespaemerval
AT kelmaramendesvieira aplicacaoderedesneuraispolinomiaisnaprevisaodoibovespaemerval
AT paulosergioceretta aplicacaoderedesneuraispolinomiaisnaprevisaodoibovespaemerval
AT josecarlosseverocorrea aplicacaoderedesneuraispolinomiaisnaprevisaodoibovespaemerval
AT carlosfredericodeoliveiracunha aplicacaoderedesneuraispolinomiaisnaprevisaodoibovespaemerval
_version_ 1718435940616110080