Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization

Identification of clinically relevant gene expression signatures for cancer stratification remains challenging. Here, the authors introduce a flexible nonlinear signal superposition model that enables dissection of large gene expression data sets into signatures and extraction of gene interactions.

Guardado en:
Detalles Bibliográficos
Autores principales: Michael Grau, Georg Lenz, Peter Lenz
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/e6122c78f3584f9387082cbd4ab6e29f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e6122c78f3584f9387082cbd4ab6e29f
record_format dspace
spelling oai:doaj.org-article:e6122c78f3584f9387082cbd4ab6e29f2021-12-02T16:51:01ZDissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization10.1038/s41467-019-12713-52041-1723https://doaj.org/article/e6122c78f3584f9387082cbd4ab6e29f2019-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12713-5https://doaj.org/toc/2041-1723Identification of clinically relevant gene expression signatures for cancer stratification remains challenging. Here, the authors introduce a flexible nonlinear signal superposition model that enables dissection of large gene expression data sets into signatures and extraction of gene interactions.Michael GrauGeorg LenzPeter LenzNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-16 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Michael Grau
Georg Lenz
Peter Lenz
Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization
description Identification of clinically relevant gene expression signatures for cancer stratification remains challenging. Here, the authors introduce a flexible nonlinear signal superposition model that enables dissection of large gene expression data sets into signatures and extraction of gene interactions.
format article
author Michael Grau
Georg Lenz
Peter Lenz
author_facet Michael Grau
Georg Lenz
Peter Lenz
author_sort Michael Grau
title Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization
title_short Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization
title_full Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization
title_fullStr Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization
title_full_unstemmed Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization
title_sort dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/e6122c78f3584f9387082cbd4ab6e29f
work_keys_str_mv AT michaelgrau dissectionofgeneexpressiondatasetsintoclinicallyrelevantinteractionsignaturesviahighdimensionalcorrelationmaximization
AT georglenz dissectionofgeneexpressiondatasetsintoclinicallyrelevantinteractionsignaturesviahighdimensionalcorrelationmaximization
AT peterlenz dissectionofgeneexpressiondatasetsintoclinicallyrelevantinteractionsignaturesviahighdimensionalcorrelationmaximization
_version_ 1718383011500654592