Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization
Identification of clinically relevant gene expression signatures for cancer stratification remains challenging. Here, the authors introduce a flexible nonlinear signal superposition model that enables dissection of large gene expression data sets into signatures and extraction of gene interactions.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e6122c78f3584f9387082cbd4ab6e29f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e6122c78f3584f9387082cbd4ab6e29f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e6122c78f3584f9387082cbd4ab6e29f2021-12-02T16:51:01ZDissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization10.1038/s41467-019-12713-52041-1723https://doaj.org/article/e6122c78f3584f9387082cbd4ab6e29f2019-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12713-5https://doaj.org/toc/2041-1723Identification of clinically relevant gene expression signatures for cancer stratification remains challenging. Here, the authors introduce a flexible nonlinear signal superposition model that enables dissection of large gene expression data sets into signatures and extraction of gene interactions.Michael GrauGeorg LenzPeter LenzNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-16 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Michael Grau Georg Lenz Peter Lenz Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization |
description |
Identification of clinically relevant gene expression signatures for cancer stratification remains challenging. Here, the authors introduce a flexible nonlinear signal superposition model that enables dissection of large gene expression data sets into signatures and extraction of gene interactions. |
format |
article |
author |
Michael Grau Georg Lenz Peter Lenz |
author_facet |
Michael Grau Georg Lenz Peter Lenz |
author_sort |
Michael Grau |
title |
Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization |
title_short |
Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization |
title_full |
Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization |
title_fullStr |
Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization |
title_full_unstemmed |
Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization |
title_sort |
dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/e6122c78f3584f9387082cbd4ab6e29f |
work_keys_str_mv |
AT michaelgrau dissectionofgeneexpressiondatasetsintoclinicallyrelevantinteractionsignaturesviahighdimensionalcorrelationmaximization AT georglenz dissectionofgeneexpressiondatasetsintoclinicallyrelevantinteractionsignaturesviahighdimensionalcorrelationmaximization AT peterlenz dissectionofgeneexpressiondatasetsintoclinicallyrelevantinteractionsignaturesviahighdimensionalcorrelationmaximization |
_version_ |
1718383011500654592 |