Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization

Identification of clinically relevant gene expression signatures for cancer stratification remains challenging. Here, the authors introduce a flexible nonlinear signal superposition model that enables dissection of large gene expression data sets into signatures and extraction of gene interactions.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Michael Grau, Georg Lenz, Peter Lenz
Format: article
Langue:EN
Publié: Nature Portfolio 2019
Sujets:
Q
Accès en ligne:https://doaj.org/article/e6122c78f3584f9387082cbd4ab6e29f
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!