Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization
Identification of clinically relevant gene expression signatures for cancer stratification remains challenging. Here, the authors introduce a flexible nonlinear signal superposition model that enables dissection of large gene expression data sets into signatures and extraction of gene interactions.
Enregistré dans:
Auteurs principaux: | , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e6122c78f3584f9387082cbd4ab6e29f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Soyez le premier à ajouter un commentaire!