Strong convergence of an inertial algorithm for maximal monotone inclusions with applications
Abstract An inertial iterative algorithm is proposed for approximating a solution of a maximal monotone inclusion in a uniformly convex and uniformly smooth real Banach space. The sequence generated by the algorithm is proved to converge strongly to a solution of the inclusion. Moreover, the theorem...
Guardado en:
Autores principales: | C. E. Chidume, A. Adamu, M. O. Nnakwe |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e612e857553340809dc734d4812d1e30 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A strong convergence theorem for generalized-Φ-strongly monotone maps, with applications
por: C. E. Chidume, et al.
Publicado: (2019) -
An Extragradient Method and Proximal Point Algorithm for Inverse Strongly Monotone Operators and Maximal Monotone Operators in Banach Spaces
por: Plubtieng Somyot, et al.
Publicado: (2009) -
A hybrid inertial algorithm for approximating solution of convex feasibility problems with applications
por: Charles E. Chidume, et al.
Publicado: (2020) -
Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces
por: Altun Ishak, et al.
Publicado: (2011) -
Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces
por: Ishak Altun, et al.
Publicado: (2011)