A training sample selection method based on united generalised inner product statistics for STAP
Abstract In heterogeneous environments, the snapshot under test (SUT) and the corresponding training samples are usually not independent and identically distributed, which seriously degrades the clutter suppression performance of space‐time adaptive processing (STAP). To solve this problem, this pap...
Guardado en:
Autores principales: | Xinzhe Li, Wenchong Xie, Yongliang Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e615d71be8a640f4a1ba72a8c2497f3b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Knowledge‐aided block sparse Bayesian learning STAP for phased‐array MIMO airborne radar
por: Ning Cui, et al.
Publicado: (2021) -
Dense false target jamming suppression for airborne superimposed stepped frequency radar
por: Wei Chen, et al.
Publicado: (2021) -
Radar target shape recognition using a gated recurrent unit based on RCS time series' statistical features by sliding window segmentation
por: Lv Ye, et al.
Publicado: (2021) -
The Teaching Method of Basketball Training Based on Intelligent Network Multimedia Technology
por: Chao Han, et al.
Publicado: (2021) -
Optimal design of anti‐interrupted sampling repeater jamming waveform for missile‐borne radar based on an improved genetic algorithm
por: Fei Cao, et al.
Publicado: (2021)