A training sample selection method based on united generalised inner product statistics for STAP
Abstract In heterogeneous environments, the snapshot under test (SUT) and the corresponding training samples are usually not independent and identically distributed, which seriously degrades the clutter suppression performance of space‐time adaptive processing (STAP). To solve this problem, this pap...
Enregistré dans:
Auteurs principaux: | Xinzhe Li, Wenchong Xie, Yongliang Wang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e615d71be8a640f4a1ba72a8c2497f3b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Knowledge‐aided block sparse Bayesian learning STAP for phased‐array MIMO airborne radar
par: Ning Cui, et autres
Publié: (2021) -
Dense false target jamming suppression for airborne superimposed stepped frequency radar
par: Wei Chen, et autres
Publié: (2021) -
Radar target shape recognition using a gated recurrent unit based on RCS time series' statistical features by sliding window segmentation
par: Lv Ye, et autres
Publié: (2021) -
The Teaching Method of Basketball Training Based on Intelligent Network Multimedia Technology
par: Chao Han, et autres
Publié: (2021) -
Optimal design of anti‐interrupted sampling repeater jamming waveform for missile‐borne radar based on an improved genetic algorithm
par: Fei Cao, et autres
Publié: (2021)