Efficient hydrogen isotopologues separation through a tunable potential barrier: The case of a C2N membrane

Abstract Isotopes separation through quantum sieving effect of membranes is quite promising for industrial applications. For the light hydrogen isotopologues (eg. H2, D2), the confinement of potential wells in porous membranes to isotopologues was commonly regarded to be crucial for highly efficient...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yuanyuan Qu, Feng Li, Mingwen Zhao
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e6186845d74a4c75acdacf3d545dfe94
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Isotopes separation through quantum sieving effect of membranes is quite promising for industrial applications. For the light hydrogen isotopologues (eg. H2, D2), the confinement of potential wells in porous membranes to isotopologues was commonly regarded to be crucial for highly efficient separation ability. Here, we demonstrate from first-principles that a potential barrier is also favorable for efficient hydrogen isotopologues separation. Taking an already-synthesized two-dimensional carbon nitride (C2N-h2D) as an example, we predict that the competition between quantum tunneling and zero-point-energy (ZPE) effects regulated by the tensile strain leads to high selectivity and permeance. Both kinetic quantum sieving and equilibrium quantum sieving effects are considered. The quantum effects revealed in this work offer a prospective strategy for highly efficient hydrogen isotopologues separation.