Regulating synchronous oscillations of cerebellar granule cells by different types of inhibition.
Synchronous oscillations in neural populations are considered being controlled by inhibitory neurons. In the granular layer of the cerebellum, two major types of cells are excitatory granular cells (GCs) and inhibitory Golgi cells (GoCs). GC spatiotemporal dynamics, as the output of the granular lay...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e61bf90f851542a48462d0714cb61256 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e61bf90f851542a48462d0714cb61256 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e61bf90f851542a48462d0714cb612562021-11-25T05:40:34ZRegulating synchronous oscillations of cerebellar granule cells by different types of inhibition.1553-734X1553-735810.1371/journal.pcbi.1009163https://doaj.org/article/e61bf90f851542a48462d0714cb612562021-06-01T00:00:00Zhttps://doi.org/10.1371/journal.pcbi.1009163https://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Synchronous oscillations in neural populations are considered being controlled by inhibitory neurons. In the granular layer of the cerebellum, two major types of cells are excitatory granular cells (GCs) and inhibitory Golgi cells (GoCs). GC spatiotemporal dynamics, as the output of the granular layer, is highly regulated by GoCs. However, there are various types of inhibition implemented by GoCs. With inputs from mossy fibers, GCs and GoCs are reciprocally connected to exhibit different network motifs of synaptic connections. From the view of GCs, feedforward inhibition is expressed as the direct input from GoCs excited by mossy fibers, whereas feedback inhibition is from GoCs via GCs themselves. In addition, there are abundant gap junctions between GoCs showing another form of inhibition. It remains unclear how these diverse copies of inhibition regulate neural population oscillation changes. Leveraging a computational model of the granular layer network, we addressed this question to examine the emergence and modulation of network oscillation using different types of inhibition. We show that at the network level, feedback inhibition is crucial to generate neural oscillation. When short-term plasticity was equipped on GoC-GC synapses, oscillations were largely diminished. Robust oscillations can only appear with additional gap junctions. Moreover, there was a substantial level of cross-frequency coupling in oscillation dynamics. Such a coupling was adjusted and strengthened by GoCs through feedback inhibition. Taken together, our results suggest that the cooperation of distinct types of GoC inhibition plays an essential role in regulating synchronous oscillations of the GC population. With GCs as the sole output of the granular network, their oscillation dynamics could potentially enhance the computational capability of downstream neurons.Yuanhong TangLingling AnQuan WangJian K LiuPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 17, Iss 6, p e1009163 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Yuanhong Tang Lingling An Quan Wang Jian K Liu Regulating synchronous oscillations of cerebellar granule cells by different types of inhibition. |
description |
Synchronous oscillations in neural populations are considered being controlled by inhibitory neurons. In the granular layer of the cerebellum, two major types of cells are excitatory granular cells (GCs) and inhibitory Golgi cells (GoCs). GC spatiotemporal dynamics, as the output of the granular layer, is highly regulated by GoCs. However, there are various types of inhibition implemented by GoCs. With inputs from mossy fibers, GCs and GoCs are reciprocally connected to exhibit different network motifs of synaptic connections. From the view of GCs, feedforward inhibition is expressed as the direct input from GoCs excited by mossy fibers, whereas feedback inhibition is from GoCs via GCs themselves. In addition, there are abundant gap junctions between GoCs showing another form of inhibition. It remains unclear how these diverse copies of inhibition regulate neural population oscillation changes. Leveraging a computational model of the granular layer network, we addressed this question to examine the emergence and modulation of network oscillation using different types of inhibition. We show that at the network level, feedback inhibition is crucial to generate neural oscillation. When short-term plasticity was equipped on GoC-GC synapses, oscillations were largely diminished. Robust oscillations can only appear with additional gap junctions. Moreover, there was a substantial level of cross-frequency coupling in oscillation dynamics. Such a coupling was adjusted and strengthened by GoCs through feedback inhibition. Taken together, our results suggest that the cooperation of distinct types of GoC inhibition plays an essential role in regulating synchronous oscillations of the GC population. With GCs as the sole output of the granular network, their oscillation dynamics could potentially enhance the computational capability of downstream neurons. |
format |
article |
author |
Yuanhong Tang Lingling An Quan Wang Jian K Liu |
author_facet |
Yuanhong Tang Lingling An Quan Wang Jian K Liu |
author_sort |
Yuanhong Tang |
title |
Regulating synchronous oscillations of cerebellar granule cells by different types of inhibition. |
title_short |
Regulating synchronous oscillations of cerebellar granule cells by different types of inhibition. |
title_full |
Regulating synchronous oscillations of cerebellar granule cells by different types of inhibition. |
title_fullStr |
Regulating synchronous oscillations of cerebellar granule cells by different types of inhibition. |
title_full_unstemmed |
Regulating synchronous oscillations of cerebellar granule cells by different types of inhibition. |
title_sort |
regulating synchronous oscillations of cerebellar granule cells by different types of inhibition. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/e61bf90f851542a48462d0714cb61256 |
work_keys_str_mv |
AT yuanhongtang regulatingsynchronousoscillationsofcerebellargranulecellsbydifferenttypesofinhibition AT linglingan regulatingsynchronousoscillationsofcerebellargranulecellsbydifferenttypesofinhibition AT quanwang regulatingsynchronousoscillationsofcerebellargranulecellsbydifferenttypesofinhibition AT jiankliu regulatingsynchronousoscillationsofcerebellargranulecellsbydifferenttypesofinhibition |
_version_ |
1718414551748182016 |