Vehicle trajectory prediction and generation using LSTM models and GANs.
Vehicles' trajectory prediction is a topic with growing interest in recent years, as there are applications in several domains ranging from autonomous driving to traffic congestion prediction and urban planning. Predicting trajectories starting from Floating Car Data (FCD) is a complex task tha...
Guardado en:
Autores principales: | Luca Rossi, Andrea Ajmar, Marina Paolanti, Roberto Pierdicca |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e61d3f56275b4caf8ed46b5374061374 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Forecasting vehicle accelerations using LSTM
por: Takeyuki ONO, et al.
Publicado: (2021) -
Encoder-Decoder Multi-Step Trajectory Prediction Technology Based on LSTM
por: Li Qingyong, He Bing, Zhang Xianyang, Zhu Xiaoyu, Liu Gang
Publicado: (2021) -
GAN-LSTM Joint Network Applied to Seismic Array Noise Signal Recognition
por: Jian Li, et al.
Publicado: (2021) -
Optimal trajectory generation with direct acceleration reshaping for autonomous vehicles
por: Isao OKAWA, et al.
Publicado: (2020) -
DoseGAN: a generative adversarial network for synthetic dose prediction using attention-gated discrimination and generation
por: Vasant Kearney, et al.
Publicado: (2020)