Uporaba metod strojnega učenja za preučevanje odnosov med značilnostmi branik in okoljem

Many studies have shown that by using nonlinear methods, the relationship between tree-ring parameters and the environment can be described (modelled) better and in more detail. In our study, (multiple) linear regression (MLR) with four nonlinear machine learning methods are compared: artif...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jernej Jevšenak, Sašo Džeroski, Tom Levanič
Formato: article
Lenguaje:DE
EN
ES
FR
SL
Publicado: Slovenian Forestry Institute 2017
Materias:
Acceso en línea:https://doaj.org/article/e62aee6dd03b45ea8919671b3e2cd43c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e62aee6dd03b45ea8919671b3e2cd43c
record_format dspace
spelling oai:doaj.org-article:e62aee6dd03b45ea8919671b3e2cd43c2021-11-15T12:34:52ZUporaba metod strojnega učenja za preučevanje odnosov med značilnostmi branik in okoljem2335-31122335-395310.20315/ASetL.114.2https://doaj.org/article/e62aee6dd03b45ea8919671b3e2cd43c2017-01-01T00:00:00Zhttp://dirros.openscience.si/IzpisGradiva.php?id=8175https://doaj.org/toc/2335-3112https://doaj.org/toc/2335-3953 Many studies have shown that by using nonlinear methods, the relationship between tree-ring parameters and the environment can be described (modelled) better and in more detail. In our study, (multiple) linear regression (MLR) with four nonlinear machine learning methods are compared: artificial neural networks (ANN), model trees (MT), bagging of model trees (BMT) and random forests of regression trees (RF). To compare the different regression methods, four datasets were used. The performance of the learned models was estimated by using 10-fold cross-validation and an additional hold-out test. For all datasets, better results were obtained by the nonlinear machine learning regression methods, which can explain more variance and yield lower error. However, none of the considered methods outperformed all other methods for all datasets. Therefore, we suggest testing several different methods before selecting the best one, e.g. for climate reconstruction.Jernej JevšenakSašo DžeroskiTom LevaničSlovenian Forestry InstitutearticleForestrySD1-669.5Environmental sciencesGE1-350DEENESFRSLActa Silvae et Ligni, Vol 114, Pp 21-24 (2017)
institution DOAJ
collection DOAJ
language DE
EN
ES
FR
SL
topic Forestry
SD1-669.5
Environmental sciences
GE1-350
spellingShingle Forestry
SD1-669.5
Environmental sciences
GE1-350
Jernej Jevšenak
Sašo Džeroski
Tom Levanič
Uporaba metod strojnega učenja za preučevanje odnosov med značilnostmi branik in okoljem
description Many studies have shown that by using nonlinear methods, the relationship between tree-ring parameters and the environment can be described (modelled) better and in more detail. In our study, (multiple) linear regression (MLR) with four nonlinear machine learning methods are compared: artificial neural networks (ANN), model trees (MT), bagging of model trees (BMT) and random forests of regression trees (RF). To compare the different regression methods, four datasets were used. The performance of the learned models was estimated by using 10-fold cross-validation and an additional hold-out test. For all datasets, better results were obtained by the nonlinear machine learning regression methods, which can explain more variance and yield lower error. However, none of the considered methods outperformed all other methods for all datasets. Therefore, we suggest testing several different methods before selecting the best one, e.g. for climate reconstruction.
format article
author Jernej Jevšenak
Sašo Džeroski
Tom Levanič
author_facet Jernej Jevšenak
Sašo Džeroski
Tom Levanič
author_sort Jernej Jevšenak
title Uporaba metod strojnega učenja za preučevanje odnosov med značilnostmi branik in okoljem
title_short Uporaba metod strojnega učenja za preučevanje odnosov med značilnostmi branik in okoljem
title_full Uporaba metod strojnega učenja za preučevanje odnosov med značilnostmi branik in okoljem
title_fullStr Uporaba metod strojnega učenja za preučevanje odnosov med značilnostmi branik in okoljem
title_full_unstemmed Uporaba metod strojnega učenja za preučevanje odnosov med značilnostmi branik in okoljem
title_sort uporaba metod strojnega učenja za preučevanje odnosov med značilnostmi branik in okoljem
publisher Slovenian Forestry Institute
publishDate 2017
url https://doaj.org/article/e62aee6dd03b45ea8919671b3e2cd43c
work_keys_str_mv AT jernejjevsenak uporabametodstrojnegaucenjazapreucevanjeodnosovmedznacilnostmibranikinokoljem
AT sasodzeroski uporabametodstrojnegaucenjazapreucevanjeodnosovmedznacilnostmibranikinokoljem
AT tomlevanic uporabametodstrojnegaucenjazapreucevanjeodnosovmedznacilnostmibranikinokoljem
_version_ 1718428467694927872