Fracture gradient prediction: an overview and an improved method
Abstract The fracture gradient is a critical parameter for drilling mud weight design in the energy industry. A new method in fracture gradient prediction is proposed based on analyzing worldwide leak-off test (LOT) data in offshore drilling. Current fracture gradient prediction methods are also rev...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
KeAi Communications Co., Ltd.
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e6345ba27c784d249bde21fbfd871dfc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e6345ba27c784d249bde21fbfd871dfc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e6345ba27c784d249bde21fbfd871dfc2021-12-02T04:12:56ZFracture gradient prediction: an overview and an improved method10.1007/s12182-017-0182-11672-51071995-8226https://doaj.org/article/e6345ba27c784d249bde21fbfd871dfc2017-09-01T00:00:00Zhttp://link.springer.com/article/10.1007/s12182-017-0182-1https://doaj.org/toc/1672-5107https://doaj.org/toc/1995-8226Abstract The fracture gradient is a critical parameter for drilling mud weight design in the energy industry. A new method in fracture gradient prediction is proposed based on analyzing worldwide leak-off test (LOT) data in offshore drilling. Current fracture gradient prediction methods are also reviewed and compared to the proposed method. We analyze more than 200 LOT data in several offshore petroleum basins and find that the fracture gradient depends not only on the overburden stress and pore pressure, but also on the depth. The data indicate that the effective stress coefficient is higher at a shallower depth than that at a deeper depth in the shale formations. Based on this finding, a depth-dependent effective stress coefficient is proposed and applied for fracture gradient prediction. In some petroleum basins, many wells need to be drilled through long sections of salt formations to reach hydrocarbon reservoirs. The fracture gradient in salt formations is very different from that in other sedimentary rocks. Leak-off test data in the salt formations are investigated, and a fracture gradient prediction method is proposed. Case applications are examined to compare different fracture gradient methods and validate the proposed methods. The reasons why the LOT value is higher than its overburden gradient are also explained.Jincai ZhangShang-Xian YinKeAi Communications Co., Ltd.articleFracture gradient predictionLeak-off testBreakdown pressureMud lossFracture gradient in saltScienceQPetrologyQE420-499ENPetroleum Science, Vol 14, Iss 4, Pp 720-730 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Fracture gradient prediction Leak-off test Breakdown pressure Mud loss Fracture gradient in salt Science Q Petrology QE420-499 |
spellingShingle |
Fracture gradient prediction Leak-off test Breakdown pressure Mud loss Fracture gradient in salt Science Q Petrology QE420-499 Jincai Zhang Shang-Xian Yin Fracture gradient prediction: an overview and an improved method |
description |
Abstract The fracture gradient is a critical parameter for drilling mud weight design in the energy industry. A new method in fracture gradient prediction is proposed based on analyzing worldwide leak-off test (LOT) data in offshore drilling. Current fracture gradient prediction methods are also reviewed and compared to the proposed method. We analyze more than 200 LOT data in several offshore petroleum basins and find that the fracture gradient depends not only on the overburden stress and pore pressure, but also on the depth. The data indicate that the effective stress coefficient is higher at a shallower depth than that at a deeper depth in the shale formations. Based on this finding, a depth-dependent effective stress coefficient is proposed and applied for fracture gradient prediction. In some petroleum basins, many wells need to be drilled through long sections of salt formations to reach hydrocarbon reservoirs. The fracture gradient in salt formations is very different from that in other sedimentary rocks. Leak-off test data in the salt formations are investigated, and a fracture gradient prediction method is proposed. Case applications are examined to compare different fracture gradient methods and validate the proposed methods. The reasons why the LOT value is higher than its overburden gradient are also explained. |
format |
article |
author |
Jincai Zhang Shang-Xian Yin |
author_facet |
Jincai Zhang Shang-Xian Yin |
author_sort |
Jincai Zhang |
title |
Fracture gradient prediction: an overview and an improved method |
title_short |
Fracture gradient prediction: an overview and an improved method |
title_full |
Fracture gradient prediction: an overview and an improved method |
title_fullStr |
Fracture gradient prediction: an overview and an improved method |
title_full_unstemmed |
Fracture gradient prediction: an overview and an improved method |
title_sort |
fracture gradient prediction: an overview and an improved method |
publisher |
KeAi Communications Co., Ltd. |
publishDate |
2017 |
url |
https://doaj.org/article/e6345ba27c784d249bde21fbfd871dfc |
work_keys_str_mv |
AT jincaizhang fracturegradientpredictionanoverviewandanimprovedmethod AT shangxianyin fracturegradientpredictionanoverviewandanimprovedmethod |
_version_ |
1718401402017939456 |