GLAG theory for superconducting property variations with A15 composition in Nb3Sn wires

Abstract We present a model for the variation of the upper critical field H c2 with Sn content in A15-type Nb-Sn wires, within the Ginzburg-Landau-Abrikosov-Gor’kov (GLAG) theory frame. H c2 at the vicinity of the critical temperature T c is related quantitatively to the electrical resistivity ρ, sp...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yingxu Li, Yuanwen Gao
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e6441b99bb7a4bc48664b5408b6ca854
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract We present a model for the variation of the upper critical field H c2 with Sn content in A15-type Nb-Sn wires, within the Ginzburg-Landau-Abrikosov-Gor’kov (GLAG) theory frame. H c2 at the vicinity of the critical temperature T c is related quantitatively to the electrical resistivity ρ, specific heat capacity coefficient γ and T c. H c2 versus tin content is theoretically formulated within the GLAG theory, and generally reproduces the experiment results. As Sn content gradually approaches the stoichiometry, A15-type Nb-Sn undergoes a transition from the dirty limit to clean limit, split by the phase transformation boundary. The H-T phase boundary and pinning force show different behaviors in the cubic and tetragonal phase. We dipict the dependence of the composition gradient on the superconducting properties variation in the A15 layer, as well as the curved tail at vicinity of H c2 in the Kramer plot of the Nb3Sn wire. This helps understanding of the inhomogeneous-composition inducing discrepancy between the results by the state-of-art scaling laws and experiments.