Feature fusion-based collaborative learning for knowledge distillation
Deep neural networks have achieved a great success in a variety of applications, such as self-driving cars and intelligent robotics. Meanwhile, knowledge distillation has received increasing attention as an effective model compression technique for training very efficient deep models. The performanc...
Guardado en:
Autores principales: | Yiting Li, Liyuan Sun, Jianping Gou, Lan Du, Weihua Ou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SAGE Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e64c67ea766f46eea337ddceeef31f02 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Equipment Quality Data Integration and Cleaning Based on Multiterminal Collaboration
por: Cui-Bin Ji, et al.
Publicado: (2021) -
Research on a Microexpression Recognition Technology Based on Multimodal Fusion
por: Jie Kang, et al.
Publicado: (2021) -
Grasp Detection under Occlusions Using SIFT Features
por: Zhaojun Ye, et al.
Publicado: (2021) -
Cooperative Cloud-Edge Feature Extraction Architecture for Mobile Image Retrieval
por: Chao He, et al.
Publicado: (2021) -
Interoperability of Multimedia Network Public Opinion Knowledge Base Group Based on Multisource Text Mining
por: Yanru Zhu
Publicado: (2021)