Status Recognition Using Pre-Trained YOLOv5 for Sustainable Human-Robot Collaboration (HRC) System in Mold Assembly
Molds are still assembled manually because of frequent demand changes and the requirement for comprehensive knowledge related to their high flexibility and adaptability in operation. We propose the application of human-robot collaboration (HRC) systems to improve manual mold assembly. In the existin...
Guardado en:
Autores principales: | Yee Yeng Liau, Kwangyeol Ryu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e652ce9034104bcb8f17d3b73c7550fc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Egocentric Gesture Recognition Using 3D Convolutional Neural Networks for the Spatiotemporal Adaptation of Collaborative Robots
por: Dimitris Papanagiotou, et al.
Publicado: (2021) -
Inertial measurement unit based human action recognition for soft-robotic exoskeletons
por: Moritz Burgdorff, et al.
Publicado: (2021) -
Robust assembly sequence generation in a Human-Robot Collaborative workcell by reinforcement learning
por: Antonelli Dario, et al.
Publicado: (2021) -
Experimental and numerical investigations of pressure-controlled resin transfer molding (PC-RTM)
por: Julian Seuffert, et al.
Publicado: (2020) -
Transfer Learning Applied to Characteristic Prediction of Injection Molded Products
por: Yan-Mao Huang, et al.
Publicado: (2021)