Review of machine learning methods for RNA secondary structure prediction.
Secondary structure plays an important role in determining the function of noncoding RNAs. Hence, identifying RNA secondary structures is of great value to research. Computational prediction is a mainstream approach for predicting RNA secondary structure. Unfortunately, even though new methods have...
Guardado en:
Autores principales: | Qi Zhao, Zheng Zhao, Xiaoya Fan, Zhengwei Yuan, Qian Mao, Yudong Yao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e660cd4533794647a001cf8ba2f46d01 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
RNA secondary structure prediction using deep learning with thermodynamic integration
por: Kengo Sato, et al.
Publicado: (2021) -
RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning
por: Jaswinder Singh, et al.
Publicado: (2019) -
Prediction of thermal boundary resistance by the machine learning method
por: Tianzhuo Zhan, et al.
Publicado: (2017) -
A Machine Learning-Based Model Predictive Control Method for Pumped Storage Systems
por: Qingsen Cai, et al.
Publicado: (2021) -
A Machine Learning Framework for Predicting Bridge Defect Detection Cost
por: Chongjiao Wang, et al.
Publicado: (2021)