Joint Trajectory Prediction of Multi-Linkage Robot Based on Graph Convolutional Network
The working accuracy of multi-linkage robot is seriously affected by the errors at the joints caused by the uncertainty factors such as vibration, wear, deformation, and manufacturing clearance. In order to improve the working accuracy, the joint motion prediction including these errors is researche...
Guardado en:
Autores principales: | Hu Wu, Xinning Li, Xianhai Yang, Ting Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e67b5c573f214cd7be10de7d8ba16050 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
por: Minghua Zhang, et al.
Publicado: (2021) -
Sentiment Analysis of Review Text Based on BiGRU-Attention and Hybrid CNN
por: Qiannan Zhu, et al.
Publicado: (2021) -
MSGCN: Multi-Subgraph Based Heterogeneous Graph Convolution Network Embedding
por: Junhui Chen, et al.
Publicado: (2021) -
Sentence Compression Using BERT and Graph Convolutional Networks
por: Yo-Han Park, et al.
Publicado: (2021) -
Drug Therapeutic-Use Class Prediction and Repurposing Using Graph Convolutional Networks
por: Mapopa Chipofya, et al.
Publicado: (2021)