Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in <italic toggle="yes">Listeria</italic> Infection and Reveals Different Actin Nucleation Mechanisms during <italic toggle="yes">Listeria</italic> Cell Invasion and Actin Comet Tail Formation

ABSTRACT Listeria monocytogenes enters nonphagocytic cells by a receptor-mediated mechanism that is dependent on a clathrin-based molecular machinery and actin rearrangements. Bacterial intra- and intercellular movements are also actin dependent and rely on the actin nucleating Arp2/3 complex, which...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andreas Kühbacher, Mario Emmenlauer, Pauli Rämo, Natasha Kafai, Christoph Dehio, Pascale Cossart, Javier Pizarro-Cerdá
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2015
Materias:
Acceso en línea:https://doaj.org/article/e684d7ac5e7c46c8bae6ac0cdf53c382
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e684d7ac5e7c46c8bae6ac0cdf53c382
record_format dspace
spelling oai:doaj.org-article:e684d7ac5e7c46c8bae6ac0cdf53c3822021-11-15T15:49:03ZGenome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in <italic toggle="yes">Listeria</italic> Infection and Reveals Different Actin Nucleation Mechanisms during <italic toggle="yes">Listeria</italic> Cell Invasion and Actin Comet Tail Formation10.1128/mBio.00598-152150-7511https://doaj.org/article/e684d7ac5e7c46c8bae6ac0cdf53c3822015-07-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00598-15https://doaj.org/toc/2150-7511ABSTRACT Listeria monocytogenes enters nonphagocytic cells by a receptor-mediated mechanism that is dependent on a clathrin-based molecular machinery and actin rearrangements. Bacterial intra- and intercellular movements are also actin dependent and rely on the actin nucleating Arp2/3 complex, which is activated by host-derived nucleation-promoting factors downstream of the cell receptor Met during entry and by the bacterial nucleation-promoting factor ActA during comet tail formation. By genome-wide small interfering RNA (siRNA) screening for host factors involved in bacterial infection, we identified diverse cellular signaling networks and protein complexes that support or limit these processes. In addition, we could precise previously described molecular pathways involved in Listeria invasion. In particular our results show that the requirements for actin nucleators during Listeria entry and actin comet tail formation are different. Knockdown of several actin nucleators, including SPIRE2, reduced bacterial invasion while not affecting the generation of comet tails. Most interestingly, we observed that in contrast to our expectations, not all of the seven subunits of the Arp2/3 complex are required for Listeria entry into cells or actin tail formation and that the subunit requirements for each of these processes differ, highlighting a previously unsuspected versatility in Arp2/3 complex composition and function. IMPORTANCE Listeria is a bacterial pathogen that induces its internalization within the cytoplasm of human cells and has been used for decades as a major molecular tool to manipulate cells in order to explore and discover cellular functions. We have inactivated individually, for the first time in epithelial cells, all the genes of the human genome to investigate whether each gene modifies positively or negatively the Listeria infectious process. We identified novel signaling cascades that have never been associated with Listeria infection. We have also revisited the role of the molecular complex Arp2/3 involved in the polymerization of the actin cytoskeleton, which was shown previously to be required for Listeria entry and movement inside host cells, and we demonstrate that contrary to the general dogma, some subunits of the complex are dispensable for both Listeria entry and bacterial movement.Andreas KühbacherMario EmmenlauerPauli RämoNatasha KafaiChristoph DehioPascale CossartJavier Pizarro-CerdáAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 6, Iss 3 (2015)
institution DOAJ
collection DOAJ
language EN
topic Microbiology
QR1-502
spellingShingle Microbiology
QR1-502
Andreas Kühbacher
Mario Emmenlauer
Pauli Rämo
Natasha Kafai
Christoph Dehio
Pascale Cossart
Javier Pizarro-Cerdá
Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in <italic toggle="yes">Listeria</italic> Infection and Reveals Different Actin Nucleation Mechanisms during <italic toggle="yes">Listeria</italic> Cell Invasion and Actin Comet Tail Formation
description ABSTRACT Listeria monocytogenes enters nonphagocytic cells by a receptor-mediated mechanism that is dependent on a clathrin-based molecular machinery and actin rearrangements. Bacterial intra- and intercellular movements are also actin dependent and rely on the actin nucleating Arp2/3 complex, which is activated by host-derived nucleation-promoting factors downstream of the cell receptor Met during entry and by the bacterial nucleation-promoting factor ActA during comet tail formation. By genome-wide small interfering RNA (siRNA) screening for host factors involved in bacterial infection, we identified diverse cellular signaling networks and protein complexes that support or limit these processes. In addition, we could precise previously described molecular pathways involved in Listeria invasion. In particular our results show that the requirements for actin nucleators during Listeria entry and actin comet tail formation are different. Knockdown of several actin nucleators, including SPIRE2, reduced bacterial invasion while not affecting the generation of comet tails. Most interestingly, we observed that in contrast to our expectations, not all of the seven subunits of the Arp2/3 complex are required for Listeria entry into cells or actin tail formation and that the subunit requirements for each of these processes differ, highlighting a previously unsuspected versatility in Arp2/3 complex composition and function. IMPORTANCE Listeria is a bacterial pathogen that induces its internalization within the cytoplasm of human cells and has been used for decades as a major molecular tool to manipulate cells in order to explore and discover cellular functions. We have inactivated individually, for the first time in epithelial cells, all the genes of the human genome to investigate whether each gene modifies positively or negatively the Listeria infectious process. We identified novel signaling cascades that have never been associated with Listeria infection. We have also revisited the role of the molecular complex Arp2/3 involved in the polymerization of the actin cytoskeleton, which was shown previously to be required for Listeria entry and movement inside host cells, and we demonstrate that contrary to the general dogma, some subunits of the complex are dispensable for both Listeria entry and bacterial movement.
format article
author Andreas Kühbacher
Mario Emmenlauer
Pauli Rämo
Natasha Kafai
Christoph Dehio
Pascale Cossart
Javier Pizarro-Cerdá
author_facet Andreas Kühbacher
Mario Emmenlauer
Pauli Rämo
Natasha Kafai
Christoph Dehio
Pascale Cossart
Javier Pizarro-Cerdá
author_sort Andreas Kühbacher
title Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in <italic toggle="yes">Listeria</italic> Infection and Reveals Different Actin Nucleation Mechanisms during <italic toggle="yes">Listeria</italic> Cell Invasion and Actin Comet Tail Formation
title_short Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in <italic toggle="yes">Listeria</italic> Infection and Reveals Different Actin Nucleation Mechanisms during <italic toggle="yes">Listeria</italic> Cell Invasion and Actin Comet Tail Formation
title_full Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in <italic toggle="yes">Listeria</italic> Infection and Reveals Different Actin Nucleation Mechanisms during <italic toggle="yes">Listeria</italic> Cell Invasion and Actin Comet Tail Formation
title_fullStr Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in <italic toggle="yes">Listeria</italic> Infection and Reveals Different Actin Nucleation Mechanisms during <italic toggle="yes">Listeria</italic> Cell Invasion and Actin Comet Tail Formation
title_full_unstemmed Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in <italic toggle="yes">Listeria</italic> Infection and Reveals Different Actin Nucleation Mechanisms during <italic toggle="yes">Listeria</italic> Cell Invasion and Actin Comet Tail Formation
title_sort genome-wide sirna screen identifies complementary signaling pathways involved in <italic toggle="yes">listeria</italic> infection and reveals different actin nucleation mechanisms during <italic toggle="yes">listeria</italic> cell invasion and actin comet tail formation
publisher American Society for Microbiology
publishDate 2015
url https://doaj.org/article/e684d7ac5e7c46c8bae6ac0cdf53c382
work_keys_str_mv AT andreaskuhbacher genomewidesirnascreenidentifiescomplementarysignalingpathwaysinvolvedinitalictoggleyeslisteriaitalicinfectionandrevealsdifferentactinnucleationmechanismsduringitalictoggleyeslisteriaitaliccellinvasionandactincomettailformation
AT marioemmenlauer genomewidesirnascreenidentifiescomplementarysignalingpathwaysinvolvedinitalictoggleyeslisteriaitalicinfectionandrevealsdifferentactinnucleationmechanismsduringitalictoggleyeslisteriaitaliccellinvasionandactincomettailformation
AT pauliramo genomewidesirnascreenidentifiescomplementarysignalingpathwaysinvolvedinitalictoggleyeslisteriaitalicinfectionandrevealsdifferentactinnucleationmechanismsduringitalictoggleyeslisteriaitaliccellinvasionandactincomettailformation
AT natashakafai genomewidesirnascreenidentifiescomplementarysignalingpathwaysinvolvedinitalictoggleyeslisteriaitalicinfectionandrevealsdifferentactinnucleationmechanismsduringitalictoggleyeslisteriaitaliccellinvasionandactincomettailformation
AT christophdehio genomewidesirnascreenidentifiescomplementarysignalingpathwaysinvolvedinitalictoggleyeslisteriaitalicinfectionandrevealsdifferentactinnucleationmechanismsduringitalictoggleyeslisteriaitaliccellinvasionandactincomettailformation
AT pascalecossart genomewidesirnascreenidentifiescomplementarysignalingpathwaysinvolvedinitalictoggleyeslisteriaitalicinfectionandrevealsdifferentactinnucleationmechanismsduringitalictoggleyeslisteriaitaliccellinvasionandactincomettailformation
AT javierpizarrocerda genomewidesirnascreenidentifiescomplementarysignalingpathwaysinvolvedinitalictoggleyeslisteriaitalicinfectionandrevealsdifferentactinnucleationmechanismsduringitalictoggleyeslisteriaitaliccellinvasionandactincomettailformation
_version_ 1718427493971525632