Redundancy Removal Adversarial Active Learning Based on Norm Online Uncertainty Indicator
Active learning aims to select the most valuable unlabelled samples for annotation. In this paper, we propose a redundancy removal adversarial active learning (RRAAL) method based on norm online uncertainty indicator, which selects samples based on their distribution, uncertainty, and redundancy. RR...
Guardado en:
Autores principales: | Jifeng Guo, Zhiqi Pang, Wenbo Sun, Shi Li, Yu Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e68b43bc908a4b6e9c50c770dd863947 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Second opinion needed: communicating uncertainty in medical machine learning
por: Benjamin Kompa, et al.
Publicado: (2021) -
RF-GANs: A Method to Synthesize Retinal Fundus Images Based on Generative Adversarial Network
por: Yu Chen, et al.
Publicado: (2021) -
Statistical uncertainty quantification to augment clinical decision support: a first implementation in sleep medicine
por: Dae Y. Kang, et al.
Publicado: (2021) -
Tracking COVID-19 using online search
por: Vasileios Lampos, et al.
Publicado: (2021) -
Relationship between the Quantitative Indicators of Cranial MRI and the Early Neurodevelopment of Preterm Infants
por: Jing Yin, et al.
Publicado: (2021)