Hybrid Machine Learning Techniques and Computational Mechanics: Estimating the Dynamic Behavior of Oxide Precipitation Hardened Steel
A new generation of Oxide Dispersion Strengthened (ODS) alloys called Oxide Precipitation Hardened (OPH) alloys, has recently been developed by the authors. The excellent mechanical properties can be improved by optimizing the chemical composition in combination with heat treatment. However, the beh...
Enregistré dans:
Auteurs principaux: | Omid Khalaj, Mohammad Behdad Jamshidi, Ehsan Saebnoori, Bohuslav Masek, Ctibor Stadler, Jiri Svoboda |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e68dfb339b0a490da84e5fb1834aa15d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Development of Machine Learning Models to Evaluate the Toughness of OPH Alloys
par: Omid Khalaj, et autres
Publié: (2021) -
Abrasive Wear Resistance of Precipitation Hardened Ni‑Cr Alloys
par: V.A. Kukareko
Publié: (2014) -
Parameter Identification of the Yoshida-Uemori Hardening Model for Remanufacturing
par: Xuhui Xia, et autres
Publié: (2021) -
Assessing Maximum Power Point Tracking Intelligent Techniques on a PV System with a Buck–Boost Converter
par: Maria I. S. Guerra, et autres
Publié: (2021) -
Effect of thixoforming and precipitation hardening on microstructure and mechanical properties of Al-10.5Si–3Cu-0.2Mg alloy produced by strain induced melt activation process
par: S.G. Shabestari, et autres
Publié: (2021)