Machine learning coarse grained models for water
A computationally efficient description of ice-water systems at the mesoscopic scale is challenging due to system size and timescale limitations. Here the authors develop a machine-learned coarse-grained water model to elucidate the ice nucleation process much more efficiently than previous models.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e694cefa440e4058adee19ae8691e135 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e694cefa440e4058adee19ae8691e135 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e694cefa440e4058adee19ae8691e1352021-12-02T17:33:11ZMachine learning coarse grained models for water10.1038/s41467-018-08222-62041-1723https://doaj.org/article/e694cefa440e4058adee19ae8691e1352019-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-08222-6https://doaj.org/toc/2041-1723A computationally efficient description of ice-water systems at the mesoscopic scale is challenging due to system size and timescale limitations. Here the authors develop a machine-learned coarse-grained water model to elucidate the ice nucleation process much more efficiently than previous models.Henry ChanMathew J. CherukaraBadri NarayananTroy D. LoefflerChris BenmoreStephen K. GraySubramanian K. R. S. SankaranarayananNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-14 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Henry Chan Mathew J. Cherukara Badri Narayanan Troy D. Loeffler Chris Benmore Stephen K. Gray Subramanian K. R. S. Sankaranarayanan Machine learning coarse grained models for water |
description |
A computationally efficient description of ice-water systems at the mesoscopic scale is challenging due to system size and timescale limitations. Here the authors develop a machine-learned coarse-grained water model to elucidate the ice nucleation process much more efficiently than previous models. |
format |
article |
author |
Henry Chan Mathew J. Cherukara Badri Narayanan Troy D. Loeffler Chris Benmore Stephen K. Gray Subramanian K. R. S. Sankaranarayanan |
author_facet |
Henry Chan Mathew J. Cherukara Badri Narayanan Troy D. Loeffler Chris Benmore Stephen K. Gray Subramanian K. R. S. Sankaranarayanan |
author_sort |
Henry Chan |
title |
Machine learning coarse grained models for water |
title_short |
Machine learning coarse grained models for water |
title_full |
Machine learning coarse grained models for water |
title_fullStr |
Machine learning coarse grained models for water |
title_full_unstemmed |
Machine learning coarse grained models for water |
title_sort |
machine learning coarse grained models for water |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/e694cefa440e4058adee19ae8691e135 |
work_keys_str_mv |
AT henrychan machinelearningcoarsegrainedmodelsforwater AT mathewjcherukara machinelearningcoarsegrainedmodelsforwater AT badrinarayanan machinelearningcoarsegrainedmodelsforwater AT troydloeffler machinelearningcoarsegrainedmodelsforwater AT chrisbenmore machinelearningcoarsegrainedmodelsforwater AT stephenkgray machinelearningcoarsegrainedmodelsforwater AT subramaniankrssankaranarayanan machinelearningcoarsegrainedmodelsforwater |
_version_ |
1718380034011430912 |