Machine learning coarse grained models for water

A computationally efficient description of ice-water systems at the mesoscopic scale is challenging due to system size and timescale limitations. Here the authors develop a machine-learned coarse-grained water model to elucidate the ice nucleation process much more efficiently than previous models.

Guardado en:
Detalles Bibliográficos
Autores principales: Henry Chan, Mathew J. Cherukara, Badri Narayanan, Troy D. Loeffler, Chris Benmore, Stephen K. Gray, Subramanian K. R. S. Sankaranarayanan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/e694cefa440e4058adee19ae8691e135
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e694cefa440e4058adee19ae8691e135
record_format dspace
spelling oai:doaj.org-article:e694cefa440e4058adee19ae8691e1352021-12-02T17:33:11ZMachine learning coarse grained models for water10.1038/s41467-018-08222-62041-1723https://doaj.org/article/e694cefa440e4058adee19ae8691e1352019-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-08222-6https://doaj.org/toc/2041-1723A computationally efficient description of ice-water systems at the mesoscopic scale is challenging due to system size and timescale limitations. Here the authors develop a machine-learned coarse-grained water model to elucidate the ice nucleation process much more efficiently than previous models.Henry ChanMathew J. CherukaraBadri NarayananTroy D. LoefflerChris BenmoreStephen K. GraySubramanian K. R. S. SankaranarayananNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-14 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Henry Chan
Mathew J. Cherukara
Badri Narayanan
Troy D. Loeffler
Chris Benmore
Stephen K. Gray
Subramanian K. R. S. Sankaranarayanan
Machine learning coarse grained models for water
description A computationally efficient description of ice-water systems at the mesoscopic scale is challenging due to system size and timescale limitations. Here the authors develop a machine-learned coarse-grained water model to elucidate the ice nucleation process much more efficiently than previous models.
format article
author Henry Chan
Mathew J. Cherukara
Badri Narayanan
Troy D. Loeffler
Chris Benmore
Stephen K. Gray
Subramanian K. R. S. Sankaranarayanan
author_facet Henry Chan
Mathew J. Cherukara
Badri Narayanan
Troy D. Loeffler
Chris Benmore
Stephen K. Gray
Subramanian K. R. S. Sankaranarayanan
author_sort Henry Chan
title Machine learning coarse grained models for water
title_short Machine learning coarse grained models for water
title_full Machine learning coarse grained models for water
title_fullStr Machine learning coarse grained models for water
title_full_unstemmed Machine learning coarse grained models for water
title_sort machine learning coarse grained models for water
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/e694cefa440e4058adee19ae8691e135
work_keys_str_mv AT henrychan machinelearningcoarsegrainedmodelsforwater
AT mathewjcherukara machinelearningcoarsegrainedmodelsforwater
AT badrinarayanan machinelearningcoarsegrainedmodelsforwater
AT troydloeffler machinelearningcoarsegrainedmodelsforwater
AT chrisbenmore machinelearningcoarsegrainedmodelsforwater
AT stephenkgray machinelearningcoarsegrainedmodelsforwater
AT subramaniankrssankaranarayanan machinelearningcoarsegrainedmodelsforwater
_version_ 1718380034011430912