Machine learning coarse grained models for water
A computationally efficient description of ice-water systems at the mesoscopic scale is challenging due to system size and timescale limitations. Here the authors develop a machine-learned coarse-grained water model to elucidate the ice nucleation process much more efficiently than previous models.
Guardado en:
Autores principales: | Henry Chan, Mathew J. Cherukara, Badri Narayanan, Troy D. Loeffler, Chris Benmore, Stephen K. Gray, Subramanian K. R. S. Sankaranarayanan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e694cefa440e4058adee19ae8691e135 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Polarizable water model for the coarse-grained MARTINI force field.
por: Semen O Yesylevskyy, et al.
Publicado: (2010) -
Operando tribochemical formation of onion-like-carbon leads to macroscale superlubricity
por: Diana Berman, et al.
Publicado: (2018) -
Learning fine-grained estimation of physiological states from coarse-grained labels by distribution restoration
por: Zengyi Qin, et al.
Publicado: (2020) -
Backmapping triangulated surfaces to coarse-grained membrane models
por: Weria Pezeshkian, et al.
Publicado: (2020) -
Protein–ligand binding with the coarse-grained Martini model
por: Paulo C. T. Souza, et al.
Publicado: (2020)