An integrated metagenomic and metabolite profiling study of hydrocarbon biodegradation and corrosion in navy ships
Abstract Naval vessels regularly mix fuel and seawater as ballast, a practice that might exacerbate fuel biodegradation and metal biocorrosion. To investigate, a metagenomic characterization and metabolite profiling of ballast from U.S. Navy vessels with residence times of 1-, ~20-, and 31 weeks was...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e697c93ee8b4464089adc2519a1f07f3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e697c93ee8b4464089adc2519a1f07f3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e697c93ee8b4464089adc2519a1f07f32021-12-05T12:05:37ZAn integrated metagenomic and metabolite profiling study of hydrocarbon biodegradation and corrosion in navy ships10.1038/s41529-021-00207-z2397-2106https://doaj.org/article/e697c93ee8b4464089adc2519a1f07f32021-12-01T00:00:00Zhttps://doi.org/10.1038/s41529-021-00207-zhttps://doaj.org/toc/2397-2106Abstract Naval vessels regularly mix fuel and seawater as ballast, a practice that might exacerbate fuel biodegradation and metal biocorrosion. To investigate, a metagenomic characterization and metabolite profiling of ballast from U.S. Navy vessels with residence times of 1-, ~20-, and 31 weeks was conducted and compared with the seawater used to fill the tanks. Aerobic Gammaproteobacteria differentially proliferated in the youngest ballast tank and aerobic-specific hydrocarbon degradation genes were quantitatively more important compared to seawater or the other ballast tanks. In contrast, the anaerobic Deltaproteobacteria dominated in the eldest ballast fluid with anaerobic-specific hydrocarbon activation genes being far more prominent. Gene activity was corroborated by detection of diagnostic metabolites and corrosion was evident by elevated levels of Fe, Mn, Ni and Cu in all ballast samples relative to seawater. The findings argue that marine microbial communities rapidly shift from aerobic to anaerobic hydrocarbonoclastic-dominated assemblages that accelerate fuel and infrastructure deterioration.Christopher R. MarksKathleen E. DuncanMark A. NannyBrian H. HarrimanRecep AvciAthenia L. OldhamJoseph M. SuflitaNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ENnpj Materials Degradation, Vol 5, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Christopher R. Marks Kathleen E. Duncan Mark A. Nanny Brian H. Harriman Recep Avci Athenia L. Oldham Joseph M. Suflita An integrated metagenomic and metabolite profiling study of hydrocarbon biodegradation and corrosion in navy ships |
description |
Abstract Naval vessels regularly mix fuel and seawater as ballast, a practice that might exacerbate fuel biodegradation and metal biocorrosion. To investigate, a metagenomic characterization and metabolite profiling of ballast from U.S. Navy vessels with residence times of 1-, ~20-, and 31 weeks was conducted and compared with the seawater used to fill the tanks. Aerobic Gammaproteobacteria differentially proliferated in the youngest ballast tank and aerobic-specific hydrocarbon degradation genes were quantitatively more important compared to seawater or the other ballast tanks. In contrast, the anaerobic Deltaproteobacteria dominated in the eldest ballast fluid with anaerobic-specific hydrocarbon activation genes being far more prominent. Gene activity was corroborated by detection of diagnostic metabolites and corrosion was evident by elevated levels of Fe, Mn, Ni and Cu in all ballast samples relative to seawater. The findings argue that marine microbial communities rapidly shift from aerobic to anaerobic hydrocarbonoclastic-dominated assemblages that accelerate fuel and infrastructure deterioration. |
format |
article |
author |
Christopher R. Marks Kathleen E. Duncan Mark A. Nanny Brian H. Harriman Recep Avci Athenia L. Oldham Joseph M. Suflita |
author_facet |
Christopher R. Marks Kathleen E. Duncan Mark A. Nanny Brian H. Harriman Recep Avci Athenia L. Oldham Joseph M. Suflita |
author_sort |
Christopher R. Marks |
title |
An integrated metagenomic and metabolite profiling study of hydrocarbon biodegradation and corrosion in navy ships |
title_short |
An integrated metagenomic and metabolite profiling study of hydrocarbon biodegradation and corrosion in navy ships |
title_full |
An integrated metagenomic and metabolite profiling study of hydrocarbon biodegradation and corrosion in navy ships |
title_fullStr |
An integrated metagenomic and metabolite profiling study of hydrocarbon biodegradation and corrosion in navy ships |
title_full_unstemmed |
An integrated metagenomic and metabolite profiling study of hydrocarbon biodegradation and corrosion in navy ships |
title_sort |
integrated metagenomic and metabolite profiling study of hydrocarbon biodegradation and corrosion in navy ships |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/e697c93ee8b4464089adc2519a1f07f3 |
work_keys_str_mv |
AT christopherrmarks anintegratedmetagenomicandmetaboliteprofilingstudyofhydrocarbonbiodegradationandcorrosioninnavyships AT kathleeneduncan anintegratedmetagenomicandmetaboliteprofilingstudyofhydrocarbonbiodegradationandcorrosioninnavyships AT markananny anintegratedmetagenomicandmetaboliteprofilingstudyofhydrocarbonbiodegradationandcorrosioninnavyships AT brianhharriman anintegratedmetagenomicandmetaboliteprofilingstudyofhydrocarbonbiodegradationandcorrosioninnavyships AT recepavci anintegratedmetagenomicandmetaboliteprofilingstudyofhydrocarbonbiodegradationandcorrosioninnavyships AT athenialoldham anintegratedmetagenomicandmetaboliteprofilingstudyofhydrocarbonbiodegradationandcorrosioninnavyships AT josephmsuflita anintegratedmetagenomicandmetaboliteprofilingstudyofhydrocarbonbiodegradationandcorrosioninnavyships AT christopherrmarks integratedmetagenomicandmetaboliteprofilingstudyofhydrocarbonbiodegradationandcorrosioninnavyships AT kathleeneduncan integratedmetagenomicandmetaboliteprofilingstudyofhydrocarbonbiodegradationandcorrosioninnavyships AT markananny integratedmetagenomicandmetaboliteprofilingstudyofhydrocarbonbiodegradationandcorrosioninnavyships AT brianhharriman integratedmetagenomicandmetaboliteprofilingstudyofhydrocarbonbiodegradationandcorrosioninnavyships AT recepavci integratedmetagenomicandmetaboliteprofilingstudyofhydrocarbonbiodegradationandcorrosioninnavyships AT athenialoldham integratedmetagenomicandmetaboliteprofilingstudyofhydrocarbonbiodegradationandcorrosioninnavyships AT josephmsuflita integratedmetagenomicandmetaboliteprofilingstudyofhydrocarbonbiodegradationandcorrosioninnavyships |
_version_ |
1718372287153963008 |